

SARDAR PATEL COLLEGE OF ENGINEERING, MUMBAI

END SEMESTER EXAMINATION, JUNE 2022

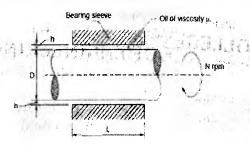
(Direct Second Year Admission Batch)

S. 4. J. Tech (M) Leus 15

CDAM: SV B Tech (Mechanical) Semester-IV

6/7/22

PROGRAM: SY B.Tech. (Mechanical), Semester-IV
COURSE: PE-BTM403 – Fluid Mechanics


Total points: 100 Duration: 3 HOURS

Note:

- Answer any 5 questions. Each question carries 20 points,
- Answer should be question specific and to the point,
- All component of a question must be answered together,
- Data in the last column represents course outcome and Blooms Taxonomy of respective question.

			CO/BT
Q1.	(A) Derive one dimensional area-velocity relation of a compressible flow as a function of Mach number for a variable area adiabatic flow. Interpret the expression to predict pressure and velocity change under subsonic and supersonic flow condition.	10	7/4
	(B) The pressure , temperature and Mach number at the entry of a flow passage are 2.45bar, 26.5 °C and 1.4 respectively. If the exit Mach number is 2.5. For the adiabatic flow of a perfect gas with γ =1.3 and R=0.469kJ/kg-K, determine a. Stagnation temperature, b. Temperature and velocity of gas at the exit, and c. The flow rate per square meter of the inlet cross-section.	10	7/3,4
Q2.	(A) Derive an expression for the force on a thin plate of given arbitrary shape immersed in a liquid at an angle θ to the free surface. Also find an expression to calculate the centre of pressure.	10	2/3,4
	(B) A wooden cylinder having a specific gravity of 0.6 has a concrete cylinder of the same diameter and 0.2 m length attached to it at one end. The specific gravity of the concrete is 2.5. Determine the length of the wooden cylinder for the composite block to float vertically	10	2/4
Q3.	(A) Write Reynolds Transport Equation and explain the significance of each term involved in the equation. Use it to derive the integral form of the continuity equation.	10	4/1,2
	(B) The distance between the centers of the two arms of a U-tube open to the atmosphere is 25 cm, and the U-tube contains 20-cm-high alcohol in both arms. Now the U-tube is rotated about the left arm at 4.2 rad/s. Determine the elevation difference between the fluid surfaces in the two arms.	10	4/3
Q4.	 (A) (a) Derive expressions from basics for the pressure inside a droplet and a free jet. (b) Define kinematic viscosity and explain the significance of the same. (c) Distinguish between Newtonian and non-Newtonian Fluids. 	10 10	2/2,3 4/3
	(B) A shaft of $D = 80$ mm, gap(h) = 0.1 mm and length of bearing, $L = 0.3$ m as shown in the following figure where a lubricating oil of viscosity 0.1 kg/ms and SG, 0.9 is	10	·

- (B) A shaft of D = 80 mm, gap(h) = 0.1 mm and length of bearing, L = 0.3 m as shown in the following figure where a lubricating oil of viscosity 0.1 kg/ms and SG. 0.9 is used.
- (a) if shaft is moved axially at 0.8 m/s, determine the resistive force offered.
- (b) If shaft is rotated at 1800 rpm, estimate the resistive torque and power required to rotate the shaft.

Q5. Consider following velocity field

$$u = 2x^2 + 3y$$
, $v = -2xy + 3y^2 + 3zy$

$$w = -\frac{3}{2}z^2 + 2xz - 9y^2z$$

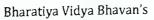
What can be concluded about the nature of the possible flow field? Write your comment.

Also calculate following at a point (1,1,1) of the flow field.

- (a) Find the acceleration and vorticity components at for above flow field.
- (b) Shear stress at x-y, y-z and z-x plane.
- **Q6.** (A) What is Couette flow? Mention all assumptions and derive an expression for developed laminar velocity profile for the flow.
- 10 4/2

10

10


6/4

3/3,4

20

5/4

- (B) (a) What is boundary layer? Explain the concept of the displacement and momentum thicknesses.
 - (b) Write Prandtle's boundary layer assumption and derive the equation for it.
- Q7. (A) What is turbulence? What characteristics a turbulent flow has? Write RAN'S 10 5/1,2 equation and explain different terms.
 - (B) There is a 45° bend in the horizontal plane. The inlet area is 1.2 m² and the outlet area is 0.6 m². The velocity of water at inlet is 12 m/s. The pressures at inlet and cutlet are 40 and 30 kPa respectively. Calculate the magnitude and direction of the resultant force on the bend.

SARDAR PATEL COLLEGE OF ENGINEERING, MUMBAI

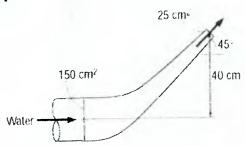
DEPARTMENT OF MECHANICAL ENGINEERING

END SEMESTER EXAMINATION, MAY 2022

J. Y. S. Fech (Mech) Lem 19/5/22

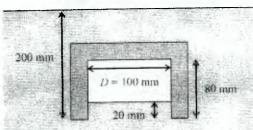
PROGRAM: SY B. Tech. (Mechanical), Semester-IV

COURSE: PE-BTM403 – Fluid Mechanics


Total points: 600
Duration: 3 HOURS

Note:

- Answer any 5 questions. Each question carries 20 points
- Answer should be question specific and to the point.
- All component of a question must be answered togather.
- Data in the last column represents course outcome and Blooms Taxonomy of respective question


CO/BT 6/2

- Q1. (A) Explain the concept of lift and drag with an illustration. How does the increase in Reynolds number effects the coefficient of drag for flow over a cylinder? Explain it and show its variations graphically.
 - (B) A reducing elbow is used to deflect water flow at a rate of 30 kg/s in a horizontal pipe upward by an angle θ =45° from the flow direction while accelerating it. The elbow discharges water into the atmosphere. The cross sectional area of the elbow is 150 cm² at the inlet and 25 cm² at the exit. The elevation difference between the centers of the exit and the inlet is 40 cm. The mass of the elbow and the water in it is 50 kg. Calculate the anchoring force needed to hold the elbow in place, using **Reynold's Transport Equation**.

- Q2. (A) Derive a general equation of hydrostatics. Assume a container filled with water fall freely from a certain height. Use this equation to predict the variation pressure inside the liquid.

 2/3
 - (B) A cylindrical bowl is inverted symmetrically and held in a dense fluid, SG=15.6, to a depth of 200 mm measured along the centre-line of the bowl from the bowl rim. The bowl height is 80 mm, and the fluid rises 20 mm inside the bowl. The bowl is 100 mm inside diameter, and it is made from an old clay recipe, SG=6.1. The volume of the bowl itself is about 0.9 L. Calculate is the force required to hold it in place?

- **Q3.** (A) Write Navier-Stokes equation for a Newtonian fluid in the differential form. Explain significance of each term in the equation. Simplify it to obtain following
 - · Euler's equation
 - Stoke's equation

SARDAR PATEL COLLEGE OF ENGINEERING, MUMBAI

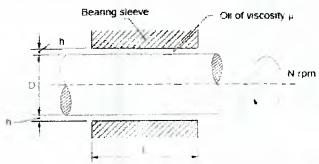
DEPARTMENT OF MECHANICAL ENGINEERING

RE-EXAMINATION EXAMINATION, JULY 2022 S.Y. A. Tech (muh) Jun IV

PROGRAM: SY B.Tech. (Mechanical), Semester-IV PE-BTM403 - Fluid Mechanics

> Total points: 100 Duration: 3 HOURS

Note:


- Answer any 5 questions. Each question carries 20 points
- Answer should be question specific and to the point.
- All component of a question must be answered togather.
- Data in the last column represents course outcome and Blooms Taxonomy of respective question

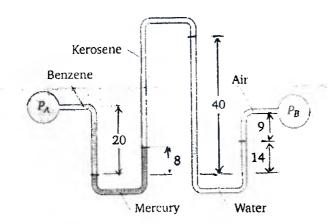
CO/BT

1/2

10

- (A) Define and explain the following terms. Q1.
 - i) Compressible flow, ii) Mach number, iii) Stagnation state, iv) Critical state, and v) Supersonic flow
 - (B) If D = 80 mm, h = 0.1 mm and L = 0.3 m as shown below, where a lubricating oil 2,3/3 of viscosity 0.1 kg/ms and SG. 0.9 is used.
 - (i) determine the resistive force offered by lubricants if shaft is moved axially at 0.8 m/s.
 - (ii) If shaft is rotated at N=1800 rpm, estimate the resistive torque and power required to rotate the shaft.

- (A) 'The surface tension is an interfacial property of a liquid". Explain it with three 1,2/3,4 different examples. How angle of contact and capillary rise/fall associated to this property? 2/4
 - (B) Following is an approximate boundary layer velocity profile.

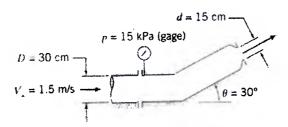

10

 $\frac{u}{U} = 2\frac{y}{\delta} - \left(\frac{y}{\delta}\right)^2$

where U is free stream velocity and remaining terms carries usual meaning. Develop expression for the displacement and momentum thicknesses.

- Q3. (A) Derive differential form of a general continuity equation. Simplify it to obtain 10 1,2/5 continuity equation for (i) a steady flow, (ii) a incompressible flow
 - (B) A multi fluid manometer is used for a certain application where it appears as shown below. Length shown is in centimetres. Specific gravity of Benzene and Kerosene is 0.88 and 0.80 respectively. Predict PB-PA.

10 3/3



- (A) Differentiate between differential and integral approach of solving a flow 04. problem. Write integral and differential form of mass and momentum equation.
- 10

3,4/3,4

10

(B) Consider flow of water through a pipe bend depicted below geometrical and operating condition. Calculate the resultant force acting on bend and find the direction of action of that force also. Use Reynolds Transport equation. If the bend angle, $\theta=0^{\circ}$, will there be any resultant force acting on the pipe?

- Q5. (A) What is turbulence? List down its characteristics and explain it with suitable examples. Write RANS equation of the turbulent flow.
- 10 2/1,2
- (B) For a given flow field $\vec{V} = 2x \vec{i} yt \vec{j}$ m/s where x and y are in meters and t is in seconds.
- 4/4,5 10

- (i) What is the dimension of flow?
- (ii) Is the flow possible?
- (iii) Find the equation of the streamline passing through (2,-1).
- (iv)Calculate velocity, acceleration, angular velocity and vorticity of flow at a location (1,1,1) and time t=2s.
- Q6. (A) Differentiate between-

10 1,2/4

- i) Lagrangian and Eularian methods of study of fluid flow
- ii) Streamlines and streak lines

2,3/3

10

10

- (B) A wooden cylinder having a specific gravity of 0.6 has a concrete cylinder of the same diameter and 0.2 m length attached to it at one end. The specific gravity of the concrete is 2.5. Determine the length of the wooden cylinder for the composite block to float vertically
- Q7. (A) What are minor and major losses in fluid flow. Provide examples with sufficient explanation.
- 10 1/1,2

2,3/3

- (B) The pressure, temperature and Mach number at the entry of a flow passage are 2.45bar, 26.5 °C and 1.4 respectively. If the exit Mach number is 2.5. For the adiabatic flow of a perfect gas with γ =1.3 and R=0.469kJ/kg-K, determine
 - (i) Stagnation temperature,
 - (ii) Temperature and velocity of gas at the exit, and
 - (iii) The flow rate per square meter of the inlet cross -section.

S-4. D. Teck (Merly) Sun 17

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester - May 2022 Examinations

Program: B.Tech Second Year Mechanical

Course Code: PC-BTM406

Course Name: Material Science

Duration: 03 Hrs

Maximum Points: 100

Semester: IV

Notes:

1. Question no 1 is compulsory

2. Attempt any four questions from the remaining six questions.

3. If necessary assume suitable data with justification

4. Draw neatly labeled sketches wherever required.

Q. No.			Questions				Points	СО	BL	PI
1A	Determine the tensile stress that is applied along the $[1\overline{1}0]$ axis of a silver crystal to cause a slip on the $(1\overline{1}\overline{1})$ $[0\overline{1}1]$ system. The critical resolved shear stress is 6MPa.							2	5	3.2.3
1B	Explain the method of plotting a TTT diagram. What information is obtained from this diagram?						06	3	2	2.3.1
1C	From the data equilibrium diag point of Cu:1,085 Answer the following A. What is the from lique B. What is the of the sollow. C. What is the	ram to sea 5 °C. the moving for the composid? the composid? the composidification	ale and laber nelting point 65%Ni allo ition of the ition of the process?	el the diag t of Ni:1,4 y composi first solid last solid	gram. The noise of the state of	nelting g out		3	3	2.4.1
	Weight	20	40	60	80					
	Liquidus temp. [©] C		1275	1345	1440					
	Solidus Temp °C	1165	1235	1310	1380					
2A	Discuss why it than just the first			er the enti	re life cycle	rather	06	1,4	6	3.2.1
2B	You are appoint Your work is to standing on the p	find out th	e weight of	each coad	ch when trai	ns are	06	1,2	6	4.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

	End Semester - May 2022 Examination explain why a particular material is only selected.	S	1	 	[
	explain why a particular material is only selected.				
2C	Draw Fe-C equilibrium diagram and label the temperature, composition, and phases. "Liquid is going to convert into two solid" explain this statement using Fe-C diagram. Also, find the exact amount of components of the given statement.	08	3	4	3.8.
3 A	Determine the Miller indices for the planes shown in the following unit cell:	08	3	5	3.1
	+X				
3B	Name the material which changes state from liquid to solid when applied to an either electrical or magnetic field. Write an application where such material is used. Explain the working of material with anyone application.	07	1	2	1.3
3C	Following are the product specification required from the customer. Suggest the process to achieve the given requirement and procedure. 1. Gear, Steel (0.1% Al, 1.5% Cr,0.3%Mo) surface hardness 1100HV, case depth:0.1 to 0.6mm. Crankshaft, medium carbon steel, case depth:0.7 to 6mm.	05	4,3	5	3.1

SARDAR PATEL COLLEGE OF ENGINEERING

4A	End Semester - May 2022 Examination Discuss each case of the heat treatment process of Fe-0.77% C	10	4	6	2.4.1
***	eutectoid steel rapidly cooled from a preheated temperature of				
	860°C (>727°C) as follows [NOTE: explain, write properties of		i		
	the final product]				
	1. Rapidly cool to 350° C, hold for 10 ⁴ s and quench to room				
	temperature				
	2. Rapidly cool to 250°C, hold for 100 s and quench to room				
	temperature;				
	3. Rapidly cool to 650 °C, hold for 20 s, rapidly cool to 400 °C,				
	hold for 10 ³ s and quench to room temperature;	}		İ	
	more for to a sum question to 100m tomporations,				
	800				
	γ Eutectoid Temperature = 727 °C				
	0 700				
	l l				
	ο 700 P P P P P P P P P P P P P P P P P P				
	E C				
	500-				
	γ Y+B B				
	400				
	400				
	300-				
	M(start)				
	200 M(50%)				
	M(90%)				
	100				<u> </u>
	10 ⁻¹ 1 10 10 ² 10 ³ 10 ⁴ 10 ⁵				
	Time (sec)				
4B	Explain metallurgical classes of stainless steel. Explain which	05	4	2	222
	stainless steel are not heat treatable and the reason behind it.	05	7	2	3.2.2
4C	Explain the crystal system in material science. Also, explain	05	2	3	2.3.1
	primitive and non-primitive unit cells using a schematic diagram.				
	±				
	Write the effect of alloying elements on the properties of	06	4		2 2 1
5A	materials when they are added to the material composition.	UU	4		2.2.1
	1. Nickel				
	2. Molybdenum				
	3. Vanadium				
	4. Cobalt				

SARDAR PATEL COLLEGE OF ENGINEERING

	5. lead				
5B	Classify ceramics based on application. Explain magnetic ceramics in detail.	06	4	4	4.2.
5C	What is the tempering heat treatment process? Discuss the various stages in the tempering process.	08	4	2,6	2.2.
6A	Classify composite based on the form of reinforcement. Explain single layer fibrous composite materials.	08	4	4	4.2.
6B	Write a composition of the following materials and their application. 1. yellow metal 2. Nickel gun-metal 3. Deoxidized copper 4. Dow metal	06	3,4	3	3.2.
6C	Explain the reason behind the Properties changes when engineering Materials are in Bulk and Fiber Forms. [Note: explain by taking some properties and materials]	06	4	3	3.2.
7A	Derive an equation for finding out the critical size of nucleation. Explain the relationship between critical radius and free energy with the help of a suitable figure.	08	2,3	4	3.8.
7B	Discuss the recycling issue in the materials. Suggest other consumer action for minimal environmental impact than just recycling.	07	1,4	6	3.4.
7C	Calculate the equilibrium no of vacancies per cubic meter for copper at 1000°C. the energy for vacancies formation is 0.9ev/atom. The atomic weight and density (at 1000°C) for copper are 63.5 g/mol and 8.4g/cm³respectively.	05	2	5	3.2.

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester (DSY)-July 2022 Examinations

S. Y. B. Tule (merl) Sun IV 13/7/22

Program: B.Tech Second Year Mechanical (DSY)

Course Code: PC-BTM406

Course Name: Material Science

Duration: 03 Hrs

Maximum Points: 100

Semester: IV

Notes:

1. Question no 1 is compulsory

2. Attempt any four questions from the remaining six questions.

3. If necessary assume suitable data with justification

4. Draw neatly labeled sketches wherever required.

Q. No.	Questions	Points	СО	BL	PI
1A	A FCC crystal yield under a normal stress of 2MPa applied in the $[\bar{1}\ 3\ 2]$ system. The slip system is (111) $[\bar{1}\ 0\ 1]$. Determine critical resolved shear stress. Also draw cubic crystals showing, slip plane and slip direction.	06	2	5	3.2.3
1B	Explain different types of grain structure form at the end of solidification process when eutectoid steel is cool from above 727° C, explain using TTT diagram.	06	3	2	2.3.1
1C	Explain the given all points in the phase diagram containing an alloy of composition 35wt% Ni-65 wt% Cu as it is cooled from 1300°C.consider equilibrium cooling condition.(use graph paper)		3	3	2.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester (DSY)-July 2022 Examinations

	End Semester (DS1)-July 2022 Examinations	06	1,4	6	3.2.1
2A	Discuss why it is important to consider the entire life cycle rather than just the first stage of materials.		1,4 201947	Ü	5.2.1
2B	You are appointed as a material engineer in the medical implant industry. Suggest material for total hip replacement. Select suitable material and explain it. Also explain why a particular material is only selected.	06	1,2	6	4.2.1
2C	Draw Fe-C equilibrium diagram and label the temperature, composition, and phases. Explain the phases existing in it.	08	3	4	3.8.1
3 A	Determine the Miller indices for the planes shown in the following unit cell:	08	3	5	3.1.1
	Plane 2 1/2				
	+2				
31	Name the material which changes its optical properties. Write a application where such material is used. Explain the working of	n 07	1	2	1.3.
	material with anyone application.	05	4,	3 5	3.1
30	Explain quenching medium. Explain the quenching mechanism when heated components are put in any quenching medium.				

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester (DSY)-July 2022 Examinations

	Discuss each case of the heat treatment process of Fe-0.77% C	10	4	6 2	.4.1
4A	Discuss each case of the fleat freatment process of the eutectoid steel rapidly cooled from a preheated temperature of 860°C (>727°C) as follows [NOTE: explain, write properties of the final product, use graph paper] 1. Rapidly cool to 650°C, hold for 10 ⁴ s and quench to room temperature 2. Rapidly cool to 310°C, hold for 70 s and quench to room temperature; 3. Rapidly cool to 650°C, hold for 20 s, rapidly cool to 400°C, hold for 10 ³ s and quench to room temperature;				
	Eutectoid Temperature = 727 °C 700 P Eutectoid Temperature = 727 °C P P B 400 M(start) M(50%) M(90%) 100 100 100 100 105				
4]	Time (sec) Explain metallurgical classes of stainless steel. Explain which stainless steel are not heat treatable and the reason behind it.	05	4	2	3.2.2
4	Why does diamond stay stable at room temperature and not transform to graphite although it is an unstable phase of carbon at room temperature? Explain with a suitable diagram.	05	2	3	2.3.1
5	Write the effect of alloying elements on the properties of materials when they are added to the material composition. 1. Cobalt 2. Tungsten 3. Titanium 4. lead	06	4		2.2.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester (DSY)-July 2022 Examinations

	las to tradical analization Evaluin magnetic	06	4	4	4.2.2
5B	Classify ceramics based on application. Explain magnetic ceramics in detail.			·	
5C	Which heat treatment process used to improve the machinability of the annealed hypereutectoid steel? This heat treatment process used cyclic heating around the eutectoid point. Explain it with a schematic diagram. Explain properties of materials before and after the heat treatment process.	08	4	2,6	2.2.2
6A	Classify composite based on the type of matrix material. Explain MMC and carbon matrix composite. Differentiate between composite materials and alloy materials.	08	4	4	4.2.2
6B	Write a composition of the following materials and their application. 1. yellow metal 2. Nickel gun-metal 3. Deoxidized copper 4. Dow metal	06	3,4	3	3.2.1
6C	Explain the reason behind the Properties changes when engineering Materials are in Bulk and Fiber Forms. [Note: explain by taking some properties and materials]	06	4	3	3.2.3
7A	Explain in detail about nucleation, growth rate, and overall transformation. give the proper reason of the following with suitable diagram(consider solidification process): 1.low transformation rate at initial period 2. At the end of the transformation rate is slow.	08	2,3	4	3.8.1
7B	Discuss the recycling issue in the materials. Suggest other consumer action for minimal environmental impact than just recycling.	07	1,4	6	3.4.2
7C	Explain twinning phenomenon and slipping with suitable diagrams.	05	2	5	3.2.

SARDAR PATEL COLLEGE OF ENGINEERING

North State of the
(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

Re-Examination - July 2022 Examinations S-Y. B. Fuh (Mul) Lem I 11/7/2

Program: B.Tech Second Year Mechanical Duration: 03 Hrs

Course Code: PC-BTM406 Maximum Points: 100

Course Name: Material Science Semester: IV

Notes:

1. Question no 1 is compulsory

2. Attempt any four questions from the remaining six questions.

3. If necessary assume suitable data with justification

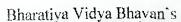
4. Draw neatly labeled sketches wherever required.

Q. No.				Questio	ns		Points	СО	BL	PI
1A	Explain		onship bet	tween crit		ize of nucleat and free energ		2	5	3.2.3
1B	structure predefin represen	es for the of ed grain so this.	one select tructure.	ed materi Use the p	al. Explain roper schem	fferent grain how to achiev atic diagram	to	3	2	2.3.1
1C	Answer A. V B. V	tum diagra Cu: 1,085 r the follow What is the rom liquid What is the	am to sca o'C. the rewing for ecomposed? ecomposed:	ale and la melting po 65%Ni all ition of th ition of th process?	bel the dia int of Ni:1, loy composi e first solid	ition: crystallizing of	out	3	3	2.4.1
		Weight % Ni	20	40	60	80				
		Liquidus temp. °C	1200	1275	1345	1440				
		Solidus Temp ² C	1165	1235	1310	1380				
2A		the total i			a schemation sources.	c drawing.	06	1,4	6	3.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

AD	Re-Examination – July 2022 Examinations	06	1,2	6	4.2.1
2B	You are appointed as a material engineer in the medical implant industry. Suggest material for total hip replacement. Select suitable material and explain it. Also explain why a particular material is only selected.		1,2	U	4.2.1
2C	Draw Fe-C equilibrium diagram and label the temperature, composition, and phases. Explain eutectoid transformation. Also, find the exact amount of components present in the eutectoid transformation.	08	3	4	3.8.1
3 A	Determine the Miller indices for the directions and the planes shown in the following unit cell:	10(6 +4)	3	5	3.1.1
	1 2 B C C C C C C C C C C C C C C C C C C				
	+X				
3B	Explain material tetrahedron in detail.	05	1	2	1.3.1
3C	Explain the following case hardening process:(process, characteristics, application) 1. Induction Hardening 2. Carbonitriding	05	4,3	5	3.1.1

SARDAR PATEL COLLEGE OF ENGINEERING


4A	Piscuss each case of the heat treatment process of Fe-0.77% C eutectoid steel rapidly cooled from a preheated temperature of 860°C (>727°C) as follows [NOTE: explain, write properties of the final product] 1. Rapidly cool to 620°C, hold for 10 ⁴ s and quench to room temperature 2. Rapidly cool to 300°C, hold for 80 s and quench to room temperature; 3. Rapidly cool to 650 °C, hold for 20 s, rapidly cool to 400 °C,	10	4	6	2.4.1
	hold for 10 ³ s and quench to room temperature; 800 Y Eutectoid Temperature = 727 °C 700 P 7 B 400				
	300 M(start) 200 M(50%) M(90%) 100 100 100 100 100 100 Time (sec)				
4B	Explain metallurgical classes of stainless steel. Explain which stainless steel is not heat treatable and the reason behind it.	05	4	2	3.2.2
40	What is a burger vector? Explain how it is obtained?	05	2	3	2.3.1
5A	Write the effect of alloying elements on the properties of materials when they are added to the material composition. 1. Nickel 2. Molybdenum 3. Vanadium 4. Cobalt 5. lead	06	4		2.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

~	Munshi Nagar, Andheri (W) Mumbai – 4				
5B	Re-Examination – July 2022 Examinations Classify ceramics based on application. Explain magnetic ceramics in detail.	06	4	4	4.2.2
5C	Which heat treatment process used to improve the machinability of the annealed hypereutectoid steel? This heat treatment process used cyclic heating around the eutectoid point. Explain it with a schematic diagram.	08	4	2,6	2.2.:
6A	Classify composite based on the type of matrix material. Explain MMC and carbon matrix composite. Differentiate between composite materials and alloy materials.	08	4	4	4.2.
6B	Write a composition of the following materials and their application. 1. Cartridge Brass 2. Muntz metal 3. Deoxidized copper 4. Admiralty gun-metal	06	3,4	3	3.2.
6C	Explain the reason behind the Properties changes when engineering Materials are in Bulk and Fiber Forms. [Note: explain by taking some properties and materials]	06	4	3	3.2.
7A	A FCC crystal yield under a normal stress of 2MPa applied in the $[\overline{1}\ 3\ 2]$ system. The slip system is (111) $[\overline{1}\ 0\ 1]$. Determine critical resolved shear stress. Also draw cubic crystals showing, slip plane and slip direction.	08	2,3	4	3.8.
7B	Discuss the recycling issue in the materials. Suggest other consumer action for minimal environmental impact than just recycling.	07	1,4	6	3.4.2
7C	Find the theoretical density of copper (FCC) assuming the atom to be a hard sphere. The atomic weight of copper is 63.54gm/mole and radius of atom is 1.278 A ⁰ .	05	2	5	3.2.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

SY, D. Ties (Meih) Lery (E) ENDSEM- EXAMINATION (DSY) JUNE-2022

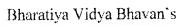
4/7/22

Program: MECHANICAL

ICAL Duration: 03 Hours

Course Code: BS-BTM401

Maximum Points: 100

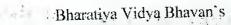

Course Name: APPLIED MATHEMATICS-IV

Semester: IV

• Attempt any five out of seven questions

Use of scientific calculator is allowed.

QN O.	QUESTION	PO IN TS	СО	BL	PI
QI a)	Let X & Y be two independent binomial variates with parameters $(n_1=6,p=1/2)$ and $(n_2=4,p=1/2)$ respectively. Evaluate $P(X+Y)=3$.	06	1	2	2.1.3
QI b)	Find a real root of $2x^3 - 2x - 5 = 0$ by regula-falsi method upto third approximation	06	3	3	1.1.1
QI c)	Verify whether the following functions can be looked upon as probability density function? $f(x) = \frac{1}{2}e^{- x }, -\infty \prec x \prec \infty$	08	1	1	1.1.2
QII a)	The diameters of can tops produced by a machine are normally distributed with standard deviation of 0.01 cms. At what mean diameter the machine be set that not more than 5% of the can tops produced by the machine have diameters exceeding 3 cms?	06	1	2	2.1.4
QII b)	Compute spearman's rank coorelation coefficient for the following data X 10 12 18 18 15 40	06	2	2	2.3.1
QII c)	Verify Stoke's theorem for the vector field $\vec{F} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the XY-plane.	08	2	2	2.3.1
QIII a)	Two bad eggs are mixed accidently with 10 good ones. Find the probability distribution of the number of bad eggs in 3, drawn at random, without replacement from this lot.	06	1	2	1.1.2
QIII b)	The sales-data of an article in six shops before and after a special promotional campaign are as under Shops A B C D E F	06	1	2	1.1.1



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- EXAMINATION(DSY) JUNE-2022

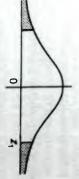
	Before	53	28	31	48	50	42	T		1	
-	Campaign										
	After	58	29	30	55	56	45				
	Campaign										
į	Can the cam	paign be	judged to	be a succ	ess at 5%	LOS.					
QIII	In a partially	destroye	ed laborato	ry record	of an an	alysis	of	08	1	1	2.1.4
	correlation of	lata, the f	following r	esults on	ly are leg	ible:					
	Vari	ance of X	ζ = 9								
	Regr	ession ed	quations:	8x	-10y + 6e	6 = 0					
				40:	x - 18y =	214					
	Wha	t are									
	i.Me	an, value	of x and y	7							
			eviation of								
	iii.Coefficie	nt of con	relation be	tween x a	nd y			1			1
OII	A car – hire	firm has	two cars	which it l	oires out a	lay by	day. The	e 06	1	13	2.3.1
QIV	number of c	lamande	for a cal or	vinon ici veach đại	v is distri	buted:	a Poisson	1			
a)	distribution	with me	an 1.5 Cal	culate the	proporti	on of	iays on				
	which neith	er car is	used and th	ne propor	tion of da	ys on	which				
	some deman			11		•					
QIV	Prove that			xv \	^ (axy a	^	ia	06	2	2	1.1.3
b)						nzjk	15				
	conservativ					.1	•	00	3	1	2.3.4
QIV	Find the po	sitive roo	ot of $x - co$	sx = 0 by	Bisectio	n metr	nod.	08	3	1	2.3.4
c)											
								1			
		. 1 40 . 1	· · · · · · · · · · · · · · · · · · ·	the fallow	ring data	and ac	mnare	06	$\frac{1}{1}$	$\frac{1}{1}$	2.3.1
QV	Fit a binom					and Co	mparc	00	1	1	2.3.1
a)	the theoreti			3 4	5						
	X	2	$\begin{array}{c cccc} 1 & 2 & \\ \hline 14 & 20 & \\ \end{array}$	34 22							
OM	In an exper	. – 1				tubero	culosis tl	ne 06	1	12	1.1.1
QV	following r					-	Juliosis ti				
b)	Tollowing I	esuits we	ere obtaine	u.							
			Affec	ted	N	ot aff	ected				
	Ino	culated	267		2	7					
	IIIO	Juiaicu	201		-	-					

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- EXAMINATION(DSY) JUNE-2022

1	Not Inoculated 757 155	86	52		
	Use Chi square test to determine the efficacy of vaccine in				
OV	preventing tuberculosis.	08	3	2	2.3.4
QV c)	Compute $\int_{0.2}^{1.4} \sin x - \log_e x + e^x dx$ using (i) Trapezoidal rule (ii) 0.2 Simpson's $1/3^{rd}$ rule taking $h = 0.2$.				
QVI	Verify Green's theorem in the plane for	06	2	1	1.1.3
a)	$\oint_c (3x^2 - 8y^2) dx + (4y - 6xy) dy \text{ where C is the boundary of}$ region defined by $y = \sqrt{x} \& y = x^2$.				
QVI	A die is thrown 264 times with the following results	06	1	3	2.1.3
b)	No appeared on 1 2 3 4 5 6				
	Frequency 40 3 28 50 54 60				
	Show that the die is biased				
QVI c)	Using Runge-Kutta method {IV th order} find the numerical solution at $x = 0.6$ for $\frac{dy}{dx} = \sqrt{x + y}$, given $y(0.4) = 0.41$ using h	08	3	1	1.1.1
	= 0.2.				
QVI	Using Newton-Raphson method find the root of $x \log_{10} x = 12.34$	06	3	3	2.1.4
I a)	with $x_0 = 10$ upto 3 places of decimal.				
QVI I b)	If $z = ax + by$ and 'r' is the correlation between x and y show that	06	2	2	1.1.3
	$\sigma_z^2 = a^2 \sigma_x^2 + b^2 \sigma_y^2 + 2abr\sigma_x \sigma_y$				
	Further show that $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$				
	Where σ_x , σ_y and σ_{x-y} are the standard deviation of x, y and x – y respectively				

SARDAR PATEL COLLEGE OF ENGINEERING


(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- EXAMINATION(DSY) JUNE-2022

QVI Verify Divergence Theorem for	08	2	2	1.1.3
Ic) $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.				

 $\widehat{\Xi}$

Percentage Points of t- distribution

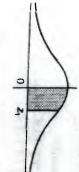
P(|t| > 1.812) = 0.1For $\Phi = 10$ d. o. f. Example

																																		_
8	120	· 8 8	40	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	=	10	9	œ	7	6	Œ	4	ω	2	-	⊕ / /¬
1.282	1.289	1.296	1.303	1.310	1.311	1.313	1.314	1.315	1.316	1.318	1.319	1.321	1.323	1.325	1.328	1.330	1.333	1.337	1.341	1.345	1.350	1.356	1.363	1.372	1.383	1.397	1.415	1.440	1.476	1.533	1.638	1.886	3.078	0.20
1.645	1.658	1.671	1.684	1.697	1.699	1.701	1.703	1.706	1.708	1.711	1.714	1.717	1.721	1.725	1.729	1.734	1.740	1.746	1.753	1.761	1.771	1.782	1.796	1.812	1.833	1.860	1.895	1.943	2.015	2.132	2.353	2.920	6.314	0.10
1.960	1.980	2.000	2.021	2.042	2.045	2.048	2.052	2.056	2.060	2.064	2.069	2.074	2.080	2.086	2.093	2.101	2.110	2.120	2.131	2.145	2.160	2.179	2.201	2.228	2.262	2.306	2.365	2.447	2.571	2.776	3.182	4.303	12.706	0.05
2.325	2.358	2.390	2.423	2.457	2.462	2.467	2.473	2.479	2.485	2.492	2.500	2.508	2.518	2.528	2.539	2.552	2.567	2.583	2.602	2.624	2.650	2.681	2.718	2.764	2.821	2.896	2.998	3.143	3.365	3.747	4.541	6.965	31.812	0.02
2.576	2,617	2,660	2704	2.750	2.756	2.763	2.771	2,779	2.287	2.797	2.807	2.819	2.831	2.845	2.861	2.878	2.898	2.921	2.947	2.977	3.012	3.055	3.106	3.169	3.250	3.355	3.499	3.707	4.032	4.604	5.841	9.925	63.657	0.01

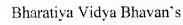
Applied Mathematics - IV (Civil / Const. / Prod.)

 \equiv

Statistical Tables


Percentage Points of χ^2 - Distribution

Example $P(\chi^2 > 15.99) = 0.10$ For $\Phi = 10$ d. o. f.


_	_																														
	30	29	28	27	26	3 6	4	3 2	3 8	3 2	5	3 =	ā	. .	i	5	14	: ಪ	12	; 	ē	j .	p 0	0 ~	J o	· ·	4 1	. ω	2		e
	14.953	14.256	13.565	12.879	12.198	11.524	10.856	10.196	9.042	8 897	8.260	7.633	7.015	6.408	5.812	4.229	4.660	4.107	3 571	3 053	2 000	2.088	0040	1,339	.872	554	297	.115	.0201	_000157	0
•	18 493	17.708	16.928	16.151	15.379	14.611	13.848	13.091	12.338	11.591	10.851	10,117	9.390	8.672	7.962	7.261	6.571	5.892	5.226	4 575	3.940	3.325	2.733	2.167	1.635	1.145	.711	.352	.103	.00393	0.80
	29 336	28.336	27.336	26.336	25.336	24.337	23.337	22.337	21.337	20.337	19.337	18.338	17.336	16.338	15.338	14.339	13.339	12.340	11.340	10.341	9.340	8.343	7.344	6.346	5.348	4.351	3.357	2.366	1.386	.455	0.50
10.200	40 250	39.087	37.916	36.741	35.363	34.382	32.196	32.007	30.813	29.615	28.412	27.204	25.989	24.769	23.542	22.307	21.064	19.812	18.549	17.275	15,987	14.684	13.362	12.017	10.645	9.236	7.779	6.251	4.605	2.706	0.10
43.773	100.34	40 557	41 337	40.113	38.885	37.652	36.415	35,172	33.924	32.671	31.410	30.144	28.869	27.587	26.296	24.996	23.685	22.362	21.026	19.675	18.307	16.919	15.507	14.067	12.592	11.070	9.488	7.815	5.991	3.841	0.05
47.962	40.083	40.418	45.410	44 140	41.856	41.566	40.270	38.968	37.659	36.349	35 020	33.687	32.346	30.995	29.633	28.259	26.873	25.472	24.054	22.618	21.161	19.679	18.168	16.622	15.033	13.388	11.668	9.837	7.824	5.214	0.02
50.892	49.588	48.2/8	+0.803	10.000	45 640	44.314	42 980	41.638	40.289	38.932	37.566	36.191	34.805	33.409	32 000	30.578	29.141	27.688	26.217	24.725	23.209	21.666	20,090					_		6.635	0.01

Area Under Standard Normal Curve

The table gives the area under the standard normal curve from z=0 to $z=z_1$ which is the probability that 2 will lie between z=0 and $z=z_1$.

7	.00	.01	.22	.03	.04	.06	8	.07	.08	2
0.0	.0000	.0040	.0080	.0120	.0160	0199	0230	0770	0310	3
0.1	.0398	.0438	.0478	.0517	.0557	.0596	0636	0675	0714	0753
0.2	.0793	.8832	.0871	.0910	.0948	.0987	1026	1064	1103	1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	1443	1480	1517
0.4	.1554	1591	,1628	1664	.1700	.1736	1772	1808	1844	1879
0.5	.1915	.1950	.1985	.2019	.2054	2088	2122	2157	3100	3
9.0	.2257	.2291	.2324	.2357	2389	2400	2454	2486	3517	2524
0.7	.2580	.2611	.2642	.2673	.2703	2734	2764	2704	2822	2050
0.8	2881	.2910	.2939	.2967	.2995	3023	3051	3078	3106	2122
0.9	3159	.3186	.3212	.3238	.3264	.3289	.3315	3340	3365	3389
1.0	.3413	.3438	.3461	.3485	3508	3531	3 7 7 7	3677	3 500	2
	.3643	.3665	.3686	.3708	3729	3749	7770	3700	9010	302
2	.3849	.3869	.3888	.3907	.3925	3944	3962	3080	3007	3030
ü	.4032	.4049	.4066	.4082	.4099	4115	.4131	4147	4162	4177
1.4	.4192	,4207	.4222	.4236	.4251	.4265	.4279	.4292	4306	4319
1.5	.4332	.4345	4357	.4370	.4382	4394	4406	4418	4490	_
1.6	.4452	.4463	.4474	.4484	.4495	.4505	4415	4505	45.35	4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	4616	4625	4633
0.00	4641	.4649	.4656	.4664	.4671	.4878	.4688	.4693	4699	4706
9	.4713	.4719	.4726	.4732	.4738	.4744	4750	.4756	4761	4767
20	.4772	.4778	4783	.4788	.4793	4798	4803	4808	2010	<u> </u>
2.1	.4821	4826	.4830	.4834	.4838	.4842	4846	4850	4954	1017
2.2	.4861	4864	.4868	.4871	.4875	.4878	4841	4994	4997	1000
	.4893	.4896	.4898	.4901	.4904	.4906	4909	4911	4913	4016
4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	4932	.4934	4936
2.5	.4938	.4940	.4941	.4943	.4945	4946	4948	10/10	100	à
2.6	.4953	.4955	.4956	.4957	4959	4560	4961	4060	1060	1002
2.7	.4965	.4966	.4967	.4968	.4969	4970	4971	4975	1070	4084
	.4974	.4975	.4976	.4977	.4977	.4978	4979	4979	4980	1081
29	.4981	.4982	4982	.4983	.4984	.4984	.4985	4985	4986	4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	4989	.4989	4990	4990

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

ENDSEM- EXAMINATION MAY-2022

Program: MECHANICAL

S. M. B. Tem (Muh)

Course Code: BS-BTM401

Maximum Points: 100 Semester: IV

Duration: 03 Hours

Course Name: APPLIED MATHEMATICS-IV

Attempt any five out of seven questions

Use of scientific calculator is allowed.

QN O.	QUE	STIOI	N					PO IN TS	СО	BL	PI
QI a)	to the	prob	ability o	f 2 succe	sses in 5	independe	endent trials ent trials is dent trials?	06	1	2	2.1.3
QI b)	Find a			-x-1=0	by regula-	falsi metho	d upto third	06	3	3	1.1.1
QI c)	mean=	=16 the	is the pront of the real of th	•	listribution	of a drv x	with	08	1	1	1.1.2
		P(x	8 1/8	12 a	16 b	20	1/12				
QII a)	ounce standa	jars is rd dev n less t	a randor iation 0.0	n variable l 05 ounce ai	having nor nd if only i	mal distrib 3% of the ja		10	1	2	2.1.4
QII b)	$\vec{F} = (x^2)$	$(-y^2)$	$\hat{i} + 2xy \hat{j}$	m for the volume over the because $z = 0$ is	ox bounde		$\mathbf{s} \mathbf{x} = 0, \mathbf{x} =$	10	2	2	2.3.1
QIII						with twenty	good whether or	06	1	2	1.1.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

ENDSEM- EXAMINATION MAY-2022

a)	not it is defective	e. Find the pr	obability dis	stribution	of the	number				
	of defective bul	bs. if four bul	bs are drawr	a out at r	andom	from			1	
	this lot.									
2777	The sales-data of a	n article in siv s	hons hefore and	d after a sr	ecial pr	omotional	06	1	2	1.1.1
ZIII			nops before and					_		
p)	campaign are as ur	В	С	D	Е	F	1			
	Shops A Before 53		31	48	50	42	1			
1	Campaign	, 20						Ì		
	After 58	3 29	30	55	56	45	1			
	Campaign	,								
	Can the campaign	be judged to be	a success at 5%	6 LOS.						
QIII	In an examinati	ion marks obt	ained by stud	dents in	nather	natics,	08	1	1	2.1.4
	physics and che	emietry are no	rmally distri	ibuted w	ith mea	ans 51,53				
c)	and 46 with sta	ndard deviation	ons 15 12 16	respecti	velv. F	ind the				
	probability of s	muaru ucviati	morks (i) 18	0 or mor	e (ii) (90 or				ļ
	1 -	securing total	marks (1) 10	O OI IIIOI	C (11)	70 01				
	below						-	 		
		1 11'	and ahon had	fond fro	m evn	erience	06	1	3	2.3.1
QIV	Suppose that a	local appliant	ces snop nas	listributs	d og De	oiccon		1		
a)	that the deman	d for tube ligh	its roughly o	nstribute	u as r	.1: -1-4				
	with a mean of	4 tubes per v	veek. If the s	nop keep	s o tu	bengnis				
	during a partic				that th	e demand				
	will exceed the	e supply durin	g that week?	?						
QIV					in 7) k	ic	06	2	2	1.1.3
b)					1112) K	12				
0)	conservative a									
QIV	Find the positi	ve root of x-	$-\cos x = 0$ by	Bisection	n metl	od.	08	3	1	2.3.4
c)	1									
υ)										
				• 1.			06	$+$ $\frac{1}{1}$	$\frac{1}{1}$	2.3.1
QV	Fit a binomial	distribution f	or the follow	ving data	and co	ompare	00	1	1	2.3.1
a)	the theoretical	frequencies y	with the actu	ial ones:						
	X	0 1 2	3 4	5						
į	f	2 14 2	34 22	2 8			1			
OV	Investigate th	- 1 - 1	between the	darknes	s of ev	ecolour in	1 06	1	2	1.1.1
QV	father and sor	from the fall	owing data		J					
b)	father and sor		olour of fath	aer [†] s eve	2					
		C	orour or rain	ici seye	•					
L										

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- EXAMINATION MAY-2022

		Dark			ot Dar		Total	1			
	Dark(Son)	48		90			138				
	Not Dark(Son)	80		78			862				
	Total	128		87	72		1000				
 QV c)		dividing ezoidal ru oson's 1/3	le	nge int	o four	equal	parts using	08	3	2	2.3.4
 QVI a)	Apply Green's through C is the plane trian $y = \frac{2x}{\pi}$.							06	2	1	1.1.3
QVI b)	A die is thrown 264 No appeared die Frequency Show that the die is	on 1 40	2 32	3 28	g resul 4 50	ts 5	60	06	1	3	2.1.3
QVI c)	Using Runge - Kur given $y(0) = 1$ at x	tta method	d of for	urth or	der, s	olve dy	$\frac{y^2 - x^2}{x^2 + x^2}$	08	3	1	1.1.1
QVI I a)	Using Newton-Ra with $x_0 = 10$ upto				root	of $x \log$	$g_{10} x = 12.34$	10	3	3	2.1.4
QVI I b)	Verify Divergence region bounded by $(a > 0, b > 0)$							10	2	2	1.1.3

Percentage Points of t- distribution

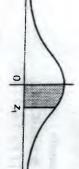
P(|t| > 1.812) = 0.1For $\Phi = 10$ d. o. f. Example

Φ/ \bar{\bar{\bar{\bar{\bar{\bar{\bar{	0.20	0.10	0.05	0.02	0.01
_	3.078	6.314	12.706	31.812	63.657
N	1.886	2.920	4.303	6.965	9.925
ω	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
ທ	1.476	2.015	2.571	3.365	4.032
თ	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
۵۰	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.287
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
40	1.303	1.684	2.021	2.423	2.704
8	1.296	1.671	2.000	2.390	2.660
. 120	1.289	1.658	1.980	2.358	2.617
8	1.282	1.645	1.960	2.325	2.576

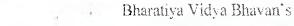
Applied Mathematics - IV (CIVII / Const. / Prod.)

(E)

Statistical Tables


Percentage Points of χ^2 - Distribution

 $P(\chi^2 > 15.99) = 0.10$ Example For $\Phi = 10 \text{ d. o. f.}$


0.05 0.02 6 3.841 5.214 5 5.991 7.824 1 7.815 9.837 9 9.488 11.668 6 11.070 13.388 6 11.070 13.388 7 14.067 16.622 15.507 18.168 19.679 18.307 21.161 19.679 19.675 22.618 21.026 21.026 24.054 22.362 22.362 25.472 23.685 22.3685 26.873 24.996 22.3685 28.259 28.259 22.5869 32.346 30.144 30.144 33.687 31.410 33.924 37.659 33.926 33.924 37.659 33.968 34.15 40.270 37.652 41.566 38.885 41.856 40.113 44.140 41.337 45.419 42.557 46.	20,002							
	50 800	47.962	43.773	40.256	29.336	18 493	14.953	30
	49.588	46.693	42.557	39.087	28.336	17.708	4.256	2 2
	48.278	45.419	41.337	37.916	27.336	16.928	0.000	3 8
	46.963	44.140	40.113	36.741	28.336	ğ.	13 555	, g
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 11 3.053 4.575 10.341 17.275 19.675 22.6	45.642	41.856	38.885	35.363	25.336	15.3/8	12.130	3 6
	44.314	41.566	37.652	34.382	24.337	14.611	10 100	9 6
	42 980	40.270	36.415	32,196	23.337	13.048	11.000) r
	41_638	38.968	35,172	32.007	22.33/	13.091	10.190	2 2
	40.289	37.659	33.924	00.010	2	200	10 100	3
	38.932	35.349	33 004	30 813	21.337	12.338	9.542	23
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 10 2.548 3.940 9.340 15.987 18.765 22.61		36 340	30 671	29 615	20.337	11.591	8.897	21
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 11 3.053 4.575 10.341 17.275 19.675 22.6	37.566	35,020	31.410	28.412	19.337	10.851	8.260	22
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 11 3.053 4.575 10.341 17.275 19.675 22.6	36.191	33.687	30.144	27.204	18.338	10,117	7.633) i
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 11 3.053 4.575 10.341 17.275 19.675 22.6	34.805	32.346	28.869	25.989	17.338	9.390	7.015	ā ā
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.940 9.340 15.987 18.307 21.161 2 11 3.053 4.575 10.341 17.275 19.675 22.6	33.409	30.995	27.587	24.769	16.338	8.672	6,408	÷ =
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .872 1.635 5.348 10.645 12.592 15.033 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 10 2.558 3.940 9.340 15.987 18.307 21.1	32.000	29.633	26.296	23.542	15.338	7.962	5.812	<u></u>
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .872 1.635 5.348 10.645 12.592 15.033 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 11 3.053 4.575 10.341 17.275 19.675 22.	30.578	28.259	24.996	22.307	14.339	7.261	4.229	15
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 11 3.053 4.575 10.341 17.275 18.307 21.1	29.141	26.873	23.685	21.064	13.339	6.571	4.660	4
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 11 3.053 4.575 10.341 17.275 18.307 21.1	27.688	25.472	22.362	19.812	12.340	5.892	4.107	: 3
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 10 2.558 3.940 9.340 15.987 18.307 21.16	26.217	24.054	21.026	18.549	11.340	5.226	3571	2
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 10 2.558 3.940 9.340 15.987 18.307 21.16	24.725	22.618	19.675	17.275	10.341	4.575	3 053	<u> </u>
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2 10 2.558 3.940 9.340 15.987 18.307 21.16								
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2 9 2.088 3.325 8.343 14.684 16.919 19.679 2	23,209	21.161	18.307	15.987	9.340	3.940	2.558	10
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1 8 1.646 2.733 7.344 13.362 15.507 18.168 2	21.666	19.679	16.919	14.684	8.343	3.325	2.088	9
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1 6 .872 1.635 5.348 10.645 12.592 15.033 1 7 1.339 2.167 6.346 12.017 14.067 16.622 1	20.090	18.168	15.507	13.362	7.344	2.733	1,646	- 00
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.386 1 6 .872 1.635 5.348 10.645 12.592 15.033 1	18.475	16.622	14.067	12.017	6,346	2,167	1.339	7
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1 5 .554 1.145 4.351 9.236 11.070 13.388 1	16.812	15.033	12.592	10.645	5.348	1.635	.872	σ
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1 4 .297 .711 3.357 7.779 9.488 11.668 1	15.086	13.388	11.070	9.236	4.351	1.145	.554	y (J1
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824 3 .115 .352 2.366 6.251 7.815 9.837 1	13.277	11.668	9.488	7.779	3.357	.711	297	4
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214 2 .0201 .103 1.386 4.605 5.991 7.824	11.341	9.837	7.815	6.251	2.366	.352	115	ω
0 = .99 0.95 0.50 0.10 0.05 0.02 1 .000157 .00393 .455 2.706 3.841 5.214	9.210	7.824	5.991	4.605	1.386	.103	.0201	N
0=.99 0.95 0.50 0.10 0.05 0.02	6.635	5.214	3.841	2.706	.455	.00393	.000157	_
	0.01	0.02	0.05	0.10	0.50	0.95	0= .99	0

Area Under Standard Normal Curve

The table gives the area under the standard normal curve from z=0 to $z=z_1$ which is the probability that z will lie between z=0 and $z=z_1$.

		4989	4989	.4988	.4988	.4987	.4987	.4987	3.0
4986	.4985	.4985	.4984	.4984	.4983	.4982	.4982	.4981	2.9
4980	.4979	.4979	.4978	.4977	.4977	.4976	.4975	.4974	
4973	.4972	.4971	.4970	.4969	.4968	.4967	.4966	.4965	2.7
.4963	.4962	.4961	.4560	.4959	.4957	.4956	.4955	.4953	1 0
.4951	.4949	.4948	.4946	.4945	.4943	.4941	.4940	.4938	25
4934	.4932	.4931	.4929	.4927	.4925	.4922	.4920	9164	† ,
.4913	.4911	.4909	.4906	.4904	.4901	.4898	.4896	.4893	
.4887	.4884	.4841	.4878	.4875	.4871	.4868	4864	.4861	9 V
.4854	.4850	.4846	.4842	.4838	.4834	.4830	.4826	.4821	, <u>-</u>
.4812	.4808	.4803	.4798	.4793	.4788	.4783	4778	.4772	2.0
.4761	.4756	.4750	.4744	.4738	.4732	.4726	.4719	.4713	
,4699	.4693	.4686	.4878	.4671	.4664	.4656	.4649	.4641	0
4625	.4616	.4608	.4599	.4591	.4582	.4573	.4564	.4554	1.7
.4535	.4525	.4415	.4505	.4495	.4484	.4474	.4463	.4452	1.6
4429	.4418	.4406	.4394	.4382	.4370	.4357	.4345	.4332	<u></u>
.4306	.4292	.4279	.4265	.4251	.4236	.4222	.4207	.4192	1.4
.4162	.4147	.4131	.4115	.4099	.4082	.4066	.4049	.4032	ີ່ພ
3997	.3980	.3962	.3944	.3925	.3907	3888	.3869	.3849	i
.3810	.3790	3770	.3749	.3729	.3708	.3686	.3665	.3643	=
3599	.3577	.3554	.3531	.3508	.3485	.3461	.3438	.3413	1.0
3365	3340	.3315	.3289	.3264	.3238	.3212	.3186	3159	9
3106	.3078	.3051	.3023	.2995	.2967	.2939	2910	1882	ο α
2823	2794	2764	.2734	.2703	.2673	.2642	2611	2580	0.7
.2517	.2486	.2454	.2422	.2389	.2357	.2324	.2291	.2257	0 0
.2190	.2157	.2123	.2088	.2054	.2019	.1985	.1950	.1915	0.5
.1844	1808	.1772	.1736	.1700	1664	.1628	1591	1554	0.4
.1480	.1443	.1406	.1368	.1331	1293	.1255	.1217	.1179	03
.1103	.1064	.1026	.0987	.0948	.0910	.0871	.8832	.0793	0.2
.0714	.0675	.0636	.0596	.0557	.0517	.0478	.0438	.0398	0.1
.0319	.0279	.0239	.0199	.0160	.0120	.0080	.0040	.0000	0.0
.08	.07	.06	.05	.04	.03	.02		100	

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

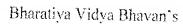
J. Y. A. Tech (mech) Lein IV ENDSEM-REEXAMINATION JULY 2022

Program: MECHANICAL

Duration: 03 Hours

Course Code: BS-BTM401

Maximum Points: 100


Course Name: APPLIED MATHEMATICS-IV

Semester: IV

Attempt any five out of seven questions

Use of scientific calculator is allowed.

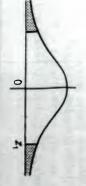
QN O.	QUES	TIO	N						×	PO IN TS	СО	BL	PI
QI	The rat	io of	the pr	obabili	ty of 3 su	ccesses i	n 5 inde	pende	nt trials	06	1	2	2.1.3
a)	1				successe of 4 succ		-						
QI b)	Find a approx			fx^2-x	-1 = 0 by	regula-fa	ılsi met	nod up	to third	06	3	3	1.1.1
QI	į.			rson's	coefficier	nt of corr	elation	for the		08	1	1	1.1.2
c)	followi			00	00	1 60	1 50	T = 0	I				
		X	78	89	99	60	59	79	68				
		Y	125	137	156	112	107	136	123				
QII	The len	gth o	of time	a lady	speaks or	telephoi	ne is for	and to	be a	10	1	2	2.1.4
a)	random	vari	able w	ith PD	F f(x) =	$\begin{cases} Ae^{-x/5}, & \\ 0, & \\ \end{cases}$	$x \ge 0$.Fi	nd A a	and the				
	i .				peak for (between				es			A region of the control of the contr	
QII	i i				r the vect					10	2	2	2.3.1
b)					z = 0 is cut		by plan	es x =	0, x =				
QIII a)	probabi	lity c	listribu	ition of	accidently the numb	er of bac				06	1	2	1.1.2
QIII b)	The sales				ix shops be	fore and af	ter a spec	cial pron	notional	06	1	2	1.1.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM-REEXAMINATION JUNE 2022

	Shops		A	B	С		D	E	E	1	1-1		
	Before		53	28	31		48	50	42	+-			
	Campai	gn			İ				12				
	After		58	29	30		55	56	45				
	Campai					_							
	Can the c	ampaig	ın be judi	ged to be	a success	at 5% l	LOS.	···	- 				
QIII	The me	an we	ight of :	500 male	e studen	ts at a	certair	colleg	ge is 15	08	1	$\frac{1}{1}$	2.1.4
c)	lb and s	tandar	d devia	tion is 1	5 lb.			·			-		2.1.1
	Assumi	ng tha	t the we	ights ar	e norma	lly dis	stribute	d. find	how			1	
	money s	tuden	ts weig	h		•		,					
		a)	•	en 120 &	& 155 lh								
		b)		han 185									
					10						-		
QIV	The prol	oabilit	y that a	smoker	aged 25	years	wili d	ie befo	ore	06	1	3	2.3.1
:)	reaching	the a	ge of 30) years n	nay be ta	aken a	0.018.	Out o	fa		1		2.5.1
	group of	`400 s	mokers	, now as	ged 25 v	ears.	what is	the	- 4				
	probabil	ity tha	it 2 smo	kers wil	l die wi	thin th	ne nevt	5 year	₀ 9				
)IV	}								31	100	1		
)	Prove th	at F=	(2xy + x)	z^3) i + (x	$(z^2+z)j+$	-(y+3)	$3xz^2)\hat{k}$	is		06	2	2	1.1.3
,	conserva	tive a	nd find	the wor	k done b	y Ē d	lisplaci	ng the	narticle		İ	1	
	from A (0, 1, 1) to B(1,0,2).			r	6•	particio	1			1
				······································									
)IV	Find the	positi	ve root	of $x - c$	$\cos x = 0$	by Bis	section	metho	d.	08	3	1	2.3.4
)											1	1	
						-							1
V	Fit a him	miol	diatail	4: - C-	41 (2.11								
.	Fit a bind	otical	aistribu e.	uon ior	the folio	wing	data ar	nd com	pare	06	1	1	2.3.1
)	the theor												
•	<u> </u>) 1	2	3 4	4	5						
		$f \mid 2$					8						
V	Investiga	te the	associa	ation bet	ween th	e dark	iness o	f eyeco	olour in	06	1	2	1.1.1
)	father and	d son	from the	e follow	ing data			y	• •••		1	12	1.1.1
					ur of fat		eves						
					02 241		~ <i>j</i> ~3						
				Dark			Not	Dark					
	Da	ırk(So	n)	48			90						
	No	ot Dar	k(Son)	80		1.1	782						
1]_									

SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- REEXAMINATION JUNE 2022

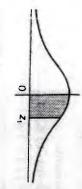
	Total	128		1	872		1	000		
QV c)		viding the rapidal rule		nto fou	r equa	parts using	g 08	3	2	2.3.4
QVI a)	Evaluate by Green's t the rectangle with ver	• 0					06	2	1	1.1.3
QVI b)	A die is thrown 264 tim No appeared on die Frequency Show that the die is bia	1 2 40 32	ollowir 3 28	g resu 4 50	5 54	6 60	06	1	3	2.1.3
QVI c)	Using Runge-Kutta m $y_0 = 1$ for the interval			_	$\frac{\mathrm{ly}}{\mathrm{lx}} = \frac{1}{\mathrm{x}}$	$\frac{1}{+y}$; $x_0 = 0$	08	3	1	1.1.1
QVI I a)	Using Newton-Raphson with $x_0 = 10$ upto 3 plants			root o	of xlog	$g_{10} x = 12.34$	10	3	3	2.1.4
QVI Ib)	Verify Divergence The $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zz)\hat{i}$ rectangular parallelep	$(zx)^{\hat{j}}+(z^2-z)^{\hat{j}}$	-				10	2	2	1.1.3

Percentage Points of t- distribution

P(|t| > 1.812) = 0.1For $\Phi = 10$ d. o. f. Example

										•																								
120	. 60	40			29	28	27	26	25	24	23	22	21	20	19	18	17	16	5	14	<u> </u>	ಸ	=	10	9	80	7	თ	σ	4	ယ	N	_	0/0
1.289	1.296	1.303	1.010	3 -	٠ ٠	1.313	1.314	1.315	1.316	1.318	1.319	1.321	1.323	1.325	1.328	1.330	1.333	1.337	1.341	1.345	1.350	1.356	1.363	1.372	1.383	1.397	1.415	1.440	1.476	1.533	1.638	1.886	3.078	0.20
1.658	1.671	1.684	/80.1	1 602	1 600	1.701	1 703	1.706	1.708	1.711	1.714	1.717	1.721	1.725	1.729	1.734	1.740	1.746	1.753	1.761	1.771	1.782	1.796	1.812	1.833	1.860	1.895	1.943	2.015	2.132	2.353	2.920	6.314	0.10
1.980	2.000	2.021	2.042	2.045		2048	3 053	2.056	2.060	2.064	2.069	2.074	2.080	2.086	2.093	2,101	2.110	2.120	2.131	2.145	2.160	2.179	2.201	2.228	2.262	2.306	2.365	2.447	2.571	2.776	3.182	4.303	12.706	0.05
2.358	2.390	2.423	2.457	2.462	04:3	2.4/3	2 470	2.479	2.485	2.492	2.500	2.508	2.518	2.528	2.539	2.552	2.567	2.583	2.602	2.624	2.650	2.681	2.718	2.764	2.821	2.896	2.998	3.143	3.365	3.747	4.541	6.965	31.812	0.02
2.617	2.660	2.704	2 750	2.756	2.763	2.//1	11.10	2.779	2.287	2.797	2.807	2.819	2.831	2.845	2.861	2.878	2.898	2.921	2.947	2.977	3.012	3.055	3.106	3.169	3.250	3.355	3,499	3.707	4.032	4.604	5.841	9.925	63.657	0.01
	1.289 1.658 1.980 2.358	1.296 1.671 2.000 2.390 1.289 1.658 1.980 2.358	1.303 1.684 2.021 2.423 1.296 1.671 2.000 2.390 1.289 1.658 1.980 2.358	40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	1.310 1.697 2.042 2.457 1.303 1.684 2.021 2.423 1.296 1.671 2.000 2.390 1.289 1.658 1.980 2.358	29 1.311 1.699 2.045 2.462 30 1.310 1.697 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	28 1.313 1.701 2.048 2.467 29 1.311 1.689 2.045 2.462 30 1.310 1.687 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.689 2.045 2.462 30 1.310 1.697 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.699 2.045 2.462 30 1.310 1.697 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.689 2.045 2.462 30 1.310 1.697 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.699 2.045 2.462 30 1.310 1.697 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	23 1.319 1.714 2.069 2.500 24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.699 2.045 2.462 30 1.310 1.697 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	22 1.321 1.717 2.074 2.508 23 1.319 1.714 2.069 2.500 24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.699 2.046 2.462 30 1.310 1.697 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.390 120 1.289 1.658 1.980 2.358	21 1.323 1.721 2.080 2.518 22 1.321 1.717 2.074 2.508 23 1.319 1.714 2.069 2.500 24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.689 2.045 2.462 30 1.310 1.687 2.045 2.462 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.358 1289 1.658 1.980 2.358	20 1.325 1.726 2.086 2.528 21 1.323 1.721 2.080 2.518 22 1.321 1.717 2.074 2.508 23 1.319 1.714 2.069 2.500 24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.699 2.048 2.467 30 1.310 1.697 2.045 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.358 120 1.289 1.658 1.980 2.358	19 1.328 1.729 2.093 2.539 20 1.325 1.725 2.086 2.528 21 1.323 1.721 2.080 2.518 22 1.321 1.717 2.074 2.508 23 1.319 1.714 2.069 2.500 24 1.318 1.711 2.060 2.485 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.689 2.048 2.467 30 1.310 1.687 2.045 2.462 30 1.310 1.687 2.021 2.423 60 1.296 1.671 2.000 2.358 120 1.289 1.658 1.980 2.358	18 1.330 1.734 2.101 2.552 19 1.328 1.729 2.093 2.539 20 1.325 1.725 2.086 2.528 21 1.325 1.721 2.080 2.518 22 1.323 1.717 2.074 2.508 23 1.319 1.714 2.069 2.500 24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.689 2.045 2.462 30 1.310 1.687 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671 2.000 2.358 120 1.289 1.658	17 1.333 1.740 2.110 2.567 18 1.330 1.734 2.101 2.552 19 1.328 1.729 2.093 2.539 20 1.325 1.725 2.086 2.528 21 1.323 1.721 2.080 2.518 22 1.321 1.717 2.074 2.508 23 1.319 1.714 2.069 2.500 24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.689 2.048 2.467 30 1.310 1.689 2.045 2.462 30 1.310 1.687 2.021 2.423 60 1.296 1.671 2.000 2.358 120 1.289 1.658 1.980 2.358	16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.567 18 1.330 1.734 2.101 2.552 19 1.328 1.729 2.093 2.539 20 1.325 1.725 2.086 2.518 21 1.323 1.721 2.080 2.518 22 1.321 1.717 2.069 2.500 24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.467 29 1.311 1.689 2.048 2.467 30 1.310 1.697 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.296 1.671	15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.567 18 1.330 1.734 2.101 2.552 19 1.328 1.729 2.083 2.539 20 1.325 1.725 2.080 2.528 21 1.323 1.721 2.080 2.518 22 1.321 1.717 2.069 2.508 23 1.319 1.711 2.064 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.056 2.479 28 1.313 1.701 2.048 2.467 29 1.311 1.699 2.048 2.467 30 1.310 1.697 2.042 2.457 40 1.303 1.684	14 1.345 1.761 2.145 2.624 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.567 18 1.330 1.734 2.101 2.552 19 1.328 1.729 2.093 2.539 20 1.325 1.726 2.080 2.518 21 1.323 1.717 2.074 2.508 22 1.321 1.717 2.069 2.500 24 1.318 1.711 2.069 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.052 2.479 27 1.314 1.703 2.052 2.473 29 1.311 1.699 2.048 2.467 29 1.311 1.699 2.048 2.462 30 1.390 1.897 2.042 2.457 40 1.303 1.684 2.021 2.423 60 1.289 1.658 1.980 2.358 120 1.289 1.658 1.980 2.358	13 1.350 1.771 2.160 2.650 14 1.345 1.761 2.145 2.624 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.552 19 1.328 1.729 2.093 2.539 20 1.325 1.721 2.086 2.528 21 1.323 1.717 2.074 2.508 22 1.321 1.717 2.069 2.508 23 1.318 1.711 2.069 2.492 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 29 1.311 1.699 2.048 2.467 30 1.310 1.697 2.045 2.462 30 1.296 1.671 2.000 2.358 120 1.289 1.658 1.980 2.358	12 1.356 1.782 2.179 2.681 13 1.350 1.771 2.160 2.650 14 1.345 1.761 2.145 2.624 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.552 19 1.328 1.729 2.083 2.539 20 1.325 1.725 2.086 2.528 21 1.323 1.721 2.080 2.518 22 1.321 1.717 2.074 2.508 23 1.319 1.714 2.069 2.500 24 1.318 1.701 2.060 2.485 25 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 29 1.311 1.699 2.048 2.467 29 1.311 1.699	11 1.363 1.796 2.201 2.718 12 1.356 1.782 2.179 2.681 13 1.356 1.771 2.160 2.650 14 1.345 1.761 2.145 2.624 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.567 18 1.330 1.734 2.101 2.552 19 1.328 1.729 2.093 2.539 20 1.325 1.721 2.086 2.528 21 1.323 1.717 2.074 2.508 22 1.321 1.714 2.069 2.508 23 1.316 1.708 2.060 2.485 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.046 2.467 29 1.315 1.689	10 1.372 1.812 2.228 2.764 11 1.363 1.796 2.201 2.718 12 1.356 1.782 2.179 2.681 13 1.350 1.771 2.160 2.650 14 1.345 1.761 2.145 2.624 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.567 18 1.330 1.724 2.101 2.552 19 1.328 1.729 2.093 2.539 20 1.325 1.725 2.086 2.528 21 1.323 1.717 2.080 2.518 22 1.318 1.711 2.069 2.508 23 1.316 1.706 2.056 2.492 25 1.316 1.703 2.056 2.473 28 1.311 1.689	9 1.383 1.833 2.262 2.821 10 1.372 1.812 2.228 2.764 11 1.363 1.796 2.201 2.718 12 1.356 1.782 2.179 2.681 13 1.350 1.771 2.160 2.650 14 1.345 1.761 2.145 2.624 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.567 18 1.330 1.734 2.101 2.552 19 1.328 1.729 2.083 2.539 20 1.325 1.725 2.086 2.528 21 1.323 1.721 2.080 2.518 22 1.321 1.717 2.074 2.508 23 1.319 1.714 2.089 2.508 24 1.318 1.711 2.064 2.492 25 1.316 1.708 2.060 2.492 26 1.315 1.706 2.056 2.479 27 1.314 1.703 2.052 2.473 28 1.313 1.701 2.048 2.052 30 1.310 1.699 2.045 2.462 30 1.390 1.587 2.042 2.423 60 1.289 1.558 1.980 2.358	8 1.397 1.860 2.306 2.896 9 1.383 1.833 2.262 2.821 10 1.372 1.812 2.228 2.764 11 1.363 1.796 2.201 2.718 11 1.363 1.796 2.179 2.681 11 1.363 1.782 2.179 2.681 12 1.356 1.782 2.179 2.681 13 1.350 1.771 2.160 2.650 14 1.345 1.761 2.145 2.6224 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.552 19 1.328 1.729 2.083 2.539 20 1.323 1.721 2.080 2.518 21 1.323 1.717 2.074 2.508 23 1.318 1.711 2.064 2.492 25 1.316 1.708 2.056 2.479 27 1.314 1.703 2.056 2.473 29 1.311 1.699 2.045 2.462 <	7 1.415 1.895 2.365 2.998 8 1.397 1.860 2.306 2.896 9 1.383 1.833 2.262 2.821 10 1.372 1.812 2.228 2.764 11 1.363 1.796 2.201 2.718 12 1.363 1.782 2.179 2.681 12 1.363 1.782 2.179 2.681 12 1.356 1.772 2.160 2.6824 1.341 1.753 2.131 2.602 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.101 2.552 19 1.328 1.728 2.083 2.539 20 1.323 1.721 2.086 2.528 21 1.318 1.711 2.069 2.508 22 1.316 1.708 2.056	6 1,440 1,943 2,447 3,143 7 1,415 1,895 2,365 2,998 8 1,397 1,860 2,306 2,896 9 1,383 1,833 2,262 2,821 10 1,372 1,812 2,228 2,764 11 1,363 1,796 2,201 2,718 12 1,356 1,782 2,179 2,681 13 1,350 1,771 2,160 2,650 14 1,345 1,761 2,146 2,624 15 1,341 1,753 2,131 2,602 16 1,337 1,746 2,120 2,583 17 1,333 1,740 2,110 2,562 18 1,330 1,724 2,101 2,552 21 1,323 1,721 2,086 2,539 22 1,316 1,701 2,069 2,508 25 1,316 1,701	5 1,476 2,015 2,571 3,365 6 1,440 1,943 2,447 3,143 7 1,415 1,895 2,365 2,998 8 1,397 1,860 2,306 2,896 9 1,383 2,262 2,821 10 1,372 1,812 2,228 2,764 11 1,363 1,796 2,201 2,718 12 1,363 1,771 2,160 2,624 13 1,350 1,771 2,160 2,624 14 1,345 1,761 2,145 2,624 15 1,341 1,753 2,131 2,624 15 1,341 1,753 2,131 2,622 16 1,337 1,746 2,120 2,583 17 1,333 1,740 2,110 2,567 18 1,330 1,725 2,080 2,539 2,131 2,081 2,252 2,288 </td <td>4 1.533 2.132 2.776 3.747 5 1.476 2.015 2.571 3.365 6 1.440 1.943 2.447 3.143 7 1.415 1.895 2.365 2.998 8 1.397 1.860 2.306 2.896 9 1.383 2.262 2.274 10 1.372 1.812 2.228 2.764 11 1.363 1.796 2.201 2.718 12 1.366 1.782 2.179 2.681 13 1.350 1.771 2.160 2.650 14 1.345 1.761 2.145 2.624 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.562 1 1.323 1.721 2.080 2.518 22 1.322 1.771 2.064 <td< td=""><td>3 1.638 2.353 3.182 4.541 4 1.533 2.132 2.776 3.747 5 1.476 2.015 2.571 3.365 6 1.440 1.943 2.447 3.143 3.747 7 1.415 1.895 2.365 2.998 3.365 2.998 8 1.397 1.860 2.306 2.896 2.896 2.896 9 1.383 1.833 2.262 2.821 2.764 11 11 1.363 1.796 2.201 2.718 2.881 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.682 2.764 1.719 2.681 1.719 2.682 2.719 2.682 1.719 2.662 2.562 1.566 2.146 2.262 2.562 2.562 2.562 2.562 2.562 2.562 2.562</td><td>2 1.886 2.920 4.303 6.965 3 1.638 2.363 3.182 4.541 9.451 4 1.533 2.132 2.776 3.747 4.541 5 1.476 2.015 2.571 3.365 4.541 6 1.440 1.943 2.447 3.143 3.747 7 1.415 1.895 2.365 2.998 2.998 8 1.397 1.860 2.306 2.896 2.896 9 1.383 1.833 2.262 2.821 2.764 11 1.366 1.796 2.228 2.764 1.719 12 1.356 1.782 2.2179 2.681 12 1.363 1.771 2.160 2.650 14 1.345 1.761 2.145 2.262 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.746 2.110 2.562 21 1.323 1.721 2.080 2.518 22 1.316 1.711 2.080 2.518 23 1.316 1.701 2.064</td><td>1 3078 6.314 12.706 31.812 6.2920 4.303 6.965 8 3.182 4.541 4.303 6.965 8 6.965 8 1.963 2.920 4.303 6.965 8 6.965 8 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 <t< td=""></t<></td></td<></td>	4 1.533 2.132 2.776 3.747 5 1.476 2.015 2.571 3.365 6 1.440 1.943 2.447 3.143 7 1.415 1.895 2.365 2.998 8 1.397 1.860 2.306 2.896 9 1.383 2.262 2.274 10 1.372 1.812 2.228 2.764 11 1.363 1.796 2.201 2.718 12 1.366 1.782 2.179 2.681 13 1.350 1.771 2.160 2.650 14 1.345 1.761 2.145 2.624 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.740 2.110 2.562 1 1.323 1.721 2.080 2.518 22 1.322 1.771 2.064 <td< td=""><td>3 1.638 2.353 3.182 4.541 4 1.533 2.132 2.776 3.747 5 1.476 2.015 2.571 3.365 6 1.440 1.943 2.447 3.143 3.747 7 1.415 1.895 2.365 2.998 3.365 2.998 8 1.397 1.860 2.306 2.896 2.896 2.896 9 1.383 1.833 2.262 2.821 2.764 11 11 1.363 1.796 2.201 2.718 2.881 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.682 2.764 1.719 2.681 1.719 2.682 2.719 2.682 1.719 2.662 2.562 1.566 2.146 2.262 2.562 2.562 2.562 2.562 2.562 2.562 2.562</td><td>2 1.886 2.920 4.303 6.965 3 1.638 2.363 3.182 4.541 9.451 4 1.533 2.132 2.776 3.747 4.541 5 1.476 2.015 2.571 3.365 4.541 6 1.440 1.943 2.447 3.143 3.747 7 1.415 1.895 2.365 2.998 2.998 8 1.397 1.860 2.306 2.896 2.896 9 1.383 1.833 2.262 2.821 2.764 11 1.366 1.796 2.228 2.764 1.719 12 1.356 1.782 2.2179 2.681 12 1.363 1.771 2.160 2.650 14 1.345 1.761 2.145 2.262 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.746 2.110 2.562 21 1.323 1.721 2.080 2.518 22 1.316 1.711 2.080 2.518 23 1.316 1.701 2.064</td><td>1 3078 6.314 12.706 31.812 6.2920 4.303 6.965 8 3.182 4.541 4.303 6.965 8 6.965 8 1.963 2.920 4.303 6.965 8 6.965 8 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 <t< td=""></t<></td></td<>	3 1.638 2.353 3.182 4.541 4 1.533 2.132 2.776 3.747 5 1.476 2.015 2.571 3.365 6 1.440 1.943 2.447 3.143 3.747 7 1.415 1.895 2.365 2.998 3.365 2.998 8 1.397 1.860 2.306 2.896 2.896 2.896 9 1.383 1.833 2.262 2.821 2.764 11 11 1.363 1.796 2.201 2.718 2.881 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.681 1.719 2.682 2.764 1.719 2.681 1.719 2.682 2.719 2.682 1.719 2.662 2.562 1.566 2.146 2.262 2.562 2.562 2.562 2.562 2.562 2.562 2.562	2 1.886 2.920 4.303 6.965 3 1.638 2.363 3.182 4.541 9.451 4 1.533 2.132 2.776 3.747 4.541 5 1.476 2.015 2.571 3.365 4.541 6 1.440 1.943 2.447 3.143 3.747 7 1.415 1.895 2.365 2.998 2.998 8 1.397 1.860 2.306 2.896 2.896 9 1.383 1.833 2.262 2.821 2.764 11 1.366 1.796 2.228 2.764 1.719 12 1.356 1.782 2.2179 2.681 12 1.363 1.771 2.160 2.650 14 1.345 1.761 2.145 2.262 15 1.341 1.753 2.131 2.602 16 1.337 1.746 2.120 2.583 17 1.333 1.746 2.110 2.562 21 1.323 1.721 2.080 2.518 22 1.316 1.711 2.080 2.518 23 1.316 1.701 2.064	1 3078 6.314 12.706 31.812 6.2920 4.303 6.965 8 3.182 4.541 4.303 6.965 8 6.965 8 1.963 2.920 4.303 6.965 8 6.965 8 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 4.541 <t< td=""></t<>

Statistical Tables


Applied Mathematics - IV (Civil / Const. / Prod.) Percentage Points of χ^2 - Distribution

 $P(\chi^2 > 15.99) = 0.10$ For $\Phi = 10 \, d. \, o. \, f.$ Example

30	22	3 6	S !	27	26	25	24	23	2	3 2	ç	3	1 0	å ~	1 0		14	: 5	N	; =	3	5 4	o o	o \	. 5) (П	4	ယ	N		9/1
14.953	14.256	3.565	10.070	12 970	12 198	11.524	10.856	10_196	8.542	8.897	0.200	2.000	7,015	5,408	5,812	4.229	4,660	4.107	3 571	3 053	2 300	2,008	0 0 0 0 0	1,339	.872	.554	.297	115	.0201	.000157	0 = .99
18 493	17.708	16.928	0, 10	0.07	15 370	14.611	13.848	13.091	12.338	11,591	10.851	10,117	9.390	8.672	7.962	7.261	6.571	5.892	5 226	4.575	3.940	3,325	2,733	2.167	1,635	1.145	711	.352	.103	.00393	0.95
29.336	28.336	27.336	28.336	20.336	37.00	24.337	23.337	22.337	21.337	20.337	18.337	18.338	17.338	16.338	15.338	14.339	13.339	12.340	11.340	10.341	9.340	8.343	7.344	6,348	5.348	4.351	3.357	2,366	1.386	.456	0.50
40.256	39.087	37.916	36.741	35.363	200.40	34 393	32.196	32.007	30.813	29.615	28,412	27.204	25.989	24.789	23.542	22.307	21.064	19.812	18,549	17.275	15.987	14.684	13.362	12.017	10.645	9.236	7,779	6.251	4.605	2.706	0.10
42 772	42.557	41.337	40.113	38.885	37.862	00.710	36 415	35.172	33.924	32.671	31.410	30.144	28.869	27.587	26,298	24.996	23.685	22.362	21,026	19.675	18.307	16.919	15,507	14.067	12.592	11.070	9.488	7.815	5.991	3.841	0.06
47.000	46 693	45.419	44.140	41.856	41.566	0.77.0	40.070	38.968	37.859	36.349	35,020	33.687	32.346	30.995	29,833	28.259	26.873	25.472	24.054	22.618	21.161	19.679	18,168	16.622	15.033	13.388	11.668	9.837	7.824	5.214	0.02
40.000	40 500	48.278	46.963	45.642	44.314	42 980	1000	41 639	40.289	38.932	37.566	36.191	34.805	33.409	32 000	30.578	29.141	27.688	26.217	24.725	23.209	21,666	20.090	18.475	16.812	15.086	13.277	11.341	9.210	6.835	0.01

Area Under Standard Normal Curve

The table gives the area under the standard normal curve from z=0 to $z=z_1$ which is the probability that z will lie between z=0 and $z=z_1$.

3.0	i d	0 6	2		2.6	2.5		2 4	ا د د	2 !	2 2 0				1 6		1	4	<u>.</u> ا د	<u>.</u>			0 9	0 9	0.7	0 0		2 0	5 6	0 0	0.0	
4987	. 100	1001	4974	4065	4953	.4938	4910	1010	4803	4961	4772	1/10	4041	4504	.4402	.4332		4195	4035	3840	2642		3159	2881	2500	.1915	100	.1179	.0/93	.0398	.0000	
4987	.4982	49/0	1075	1000	4955	.4940	.4920	0000	1806	.4020	.4778	.4/19	.4649	.4564	.4463	.4345	1024	4007	4040	2000	3666		3186	2010	200	.1950	50	.121/	.8832	.0438	.0040	1
.4987	.4982	.4976	.486/	.4800	Apro	.4941	.4922	.4098	.4668	.4630	.4783	.4/26	.4656	.4573	.4474	.4357	.4222	.4000	.3888	.0000	.3461	i i	2010	2407	.2324	.1985	1628	.1255	.0871	.0478	.0080	
.4988	.4983	.4977	.4968	.495/	1000	4943	.4925	.4901	.4871	.4834	.4788	.4732	.4664	.4582	.4484	.4370	.4236	.4082	3907	.3/08	.3485	.06.30	7067	2073	.235/	.2019	1664	1293	.0910	.0517	.0120	
.4988	.4984	.4977	.4969	.4959	. 1910	1015	.4927	.4904	.4875	.4838	.4793	.4738	.4671	.4591	.4495	.4382	.4251	.4099	.3925	.3729	.3508	.0204	0000	.2/03	.2389	.2054	1700	.1331	.0948	.0557	.0160	
.4989	.4984	.4978	.4970	.4560	0464	200	.4929	.4906	.4878	.4842	.4798	.4744	.4878	.4599	.4505	.4394	.4265	.4115	.3944	.3749	.3531	.3289	.3023	.2734	.2422	.2088	.1736	.1368	.0987	.0596	.0199	
.4989	.4985	.4979	.4971	.4961	.4848		.4931	.4909	.4841	.4846	.4803	.4750	.4686	.4608	.4415	.4406	.4279	.4131	.3962	.3770	3554	.3315	.3051	.2764	.2454	.2123	.1772	.1406	.1026	.0636	.0239	
.4989	.4985	.4979	.4972	.4962	4949		.4932	.4911	.4884	.4850	.4808	.4756	.4693	.4616	.4525	.4418	.4292	4147	.3980	.3790	.3577	.3340	.3078	.2794	.2486	.2157	1808	.1443	.1064	.0675	.0279	.07
.4990	.4986	.4980	.4973	.4963	.4951		.4934	.4913	.4887	.4854	.4812	.4761	4699	.4625	.4535	4429	.4306	.4162	3997	3810	3599	3365	3106	2823	.2517	2190	1844	1480	.1103	.0714	.0319	.00
4990	4986	4981	4974	4964	4952		4936	4916	4890	.4857	.4817	4767	4706	4633	.4545	4441	4319	4177	4015	3830	3621	3389	3133	2852	2549	2224	1879	1517	1141	0753	0359	.09

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

DSY End Semester - JUNE 2022 Examinations

Program: S.Y.B. Tech. (Mechanical Engineering) Lun | Duration: 03 Hrs

Course Code: PC-BTM404 Maximum Points: 100

Course Name: Mechanical Engineering Measurement

Semester: IV

817/22

Notes:

1. Question number 1 is compulsory

2. Solve any 4 questions from question number 2 to 7

2. If necessary assume suitable data with justification

3. Draw neat labeled sketches wherever required.

Q. No.	Questions		Points	CO	BL	PI
1	Following table list the measuring instruments (left hand side column table) for measuring mechanical properties (right hand side column table) of the system. Students shall match the measuring instruments the corresponding mechanical property. Measuring Instruments	of the	05	3	4	1.2.3
2 (A)	It is proposed to develop measurement and control system for mai temperature and pressure of a reactor chamber in pharma applications. Proposed design aimed to retrieved data from system.	ntaining ceutical em and ents are	10	2	3	1.2.2
2 (B)	Explain generalized measurement system with neat schematic Further map the different constituents of generalized measurement with the physical elements of Bourdon Pressure Gauge	t system	10	1	2	1.6.1
3 (A)	A single strain gauge having resistance of 130 Ω is mounted of cantilever beam at a distance 0.12 m from the free end. The dimensions are 25 cm (length) x 2.0 cm (width) x 0.3 cm (desurknown force F applied at the free end produces a deflection of	ne bean pth). Ai	10	4	4	4.6.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

DSY End Semester - JUNE 2022 Examinations

	respectively. F= Force, L Young's mod	e gauge factor. Deflection =Length, E= Youngs modulus for steel as 200x10 ⁹ N		nere			w.	
	Following is t	the calibration data of a pre	ssure transducer:		,			
	q _i (Mpa)	q _o (increasing) (Mpa)	q ₀ (decreasing) (Mpa)		10	3	*2	
	0	2	-1					
	10	8	12			T	*	
	20	17	23					3.1.1
3 (B)	30	26	34					
(1)	40	39	41					
	50	49	inear fit. (ii) The standard devi					
	q0=30 after Hysteresis er A small can made of spri	calibration. (iv) Plot Hy ror and dead band tilever beam is constructed ng Steel having modulus of	cept. (iii) qi if the instrument steresis curve and find Maxid for measurement of force F. f elasticity E=200X10 ⁹ N/m ² . ick, with a length of 25±0.025	It is The mm.	10	2	2	
4 (A)	An LVDT is error in disp	sused for displacement senulacement is ± 0.025 mm. Our if the displacement of LV gerror in bar dimensions (sing. It is estimated that the income are all culate the value of force are	nd the				2.1.2
	of LVDT, m	1	gth of beam, m; and x= displac		10	4	6	3.8.1
4 (B)	temperature system (ii) COVID-19 temperature	measurement is essential Temperature of human be pandemic situation. Studen measuring system for the plain their working princip be assigned to explanate	ions/systems/processes where al; (i) Processor of the com- ings entering institute campus dents shall select the appro- above applications with justifi- le with neat labelled sketches. tion only if selection of systems	under opriate ication (Note:				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

DSY End Semester - JUNE 2022 Examinations

5 (A)	A diaphragm pressure gauge is constructed of spring steel to measure differential of 7 MN/m ² . The diameter of diaphragm is 12.5 mm. Calculate the thickness of diaphragm, if the maximum deflection is 0.333 of thickness. Also calculate the natural frequency of diaphragm. Given: Young's modulus=200 GN/m ² , Poisson's ratio-0.28 and density of steel=7800 kg/m ³	10	2	4	4.1.1.
5 (B)	In laboratory mercury in capillary tube temperature measurement system is available. It was proposed to measure humidity present in the laboratory. Explain step-by-step way to measure humidity. Draw appropriate sketches and flow diagram to explain the procedure	10	2	5	3.6.1
6	With neat labeled diagram explain working of (i) optical encoder (ii) stroboscope (iii) eddy current drag-cup tachometer (iv) peizo-electric accelerometer	20	2	3	2.1.2
7(A)	Find the following for a unit step input: Undamped natural frequency, damping ratio, damped natural frequency, settling time (tolerance within	10	4	4	4.1.2
7(B)	2%), peak time, rise time, percentage overshoot. A temperature probe is transferred from air at 25° C to air at 35° C, then to water at 70° C, and back to air at 35° C. Assume that in each case the transfer is "instantaneous". The effective time constants and the timing sequence are as follows: In air, probe dry, $\tau = 30$ s; In water, $\tau = 5$ s; In air, probe wet, $\tau = 20$ s; For $t < 0$, $T = 25^{\circ}$ C (initial temperature) $0 < t < 7$, $T = 35^{\circ}$ C (dry probe in air) $7 < t < 15$, $T = 70^{\circ}$ C (probe in water), $15 < t < 30$, $T = 35^{\circ}$ C (wet probe in air). Calculate the indicated temperature at the end of each time interval and draw approximate graph of temperature versus time at the interval of 2 seconds.	10	3	4	2.1.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester - May 2022 Examinations

Program: S.Y.B. Tech. (Mechanical Engineering) Low 1 Duration: 03 Hrs

2115/2

Course Code: PC-BTM404

Maximum Points: 100

Semester: IV

Course Name: Mechanical Engineering Measurement

Notes:

1. Question number 1 is compulsory

2. Solve any 4 questions from question number 2 to 7

2. If necessary assume suitable data with justification

3. Draw neat labeled sketches wherever required.

Q. No.	Questions		Points	СО	BL	PI
1	Following table list the measuring instruments table) for measuring mechanical properties (table) of the system. Students shall match the corresponding mechanical property. Measuring Instruments Radiation pyrometer Pirani gauge	measuring instrument with Measurand Temperature Liquid Level	05	3	4	1.2.3
	Rotameter Float Gauges Thermistor Further student shall explain only the measurement instrument listed on left hand sheat sketch. (Note: Credits will be given only	side column of the table with	15			
2 (A)	It is proposed to develop measurement and c temperature and pressure of a reactor applications. Proposed design aimed to retr controlled it remotely using internet net instructed to present architecture of such net and control system (explain with neat schema	chamber in pharmaceutical ieved data from system and work system. Students are work integrated measurement	10	2	3	1.2.2
2 (B)	Explain generalized measurement system v Further map the different constituents of gen with the physical elements of Laser Doppler	eralized measurement system	10	1	2	1.6.1
3 (A)	A single strain gauge having resistance of cantilever beam at a distance 0.12 m fro dimensions are 25 cm (length) x 2.0 cm (unknown force F applied at the free end production)	om the free end. The beam width) x 0.3 cm (depth). An	10	4	4	4.6.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester - May 2022 Examinations

	of the free end. If the changes in gauge resistance is found to be 0.145 Ω ,		1		
	calculate the gauge factor. Deflection of the free end δ= FL ³ /3EI, where F= Force, L=Length, E= Youngs modulus, I=Moment of Inertia, Take				
	Young's modulus for steel as 200x10 ⁹ N/m ²				
3 (B)	Explain working principle of Mcleod gauge with neat diagram. A Mcleod gauge has volume of bulb and measuring capillary equal to 110x10 ⁻⁶ m ³ and measuring capillary diameter of 1.1 mm. (i) Calculate the pressure indicated when the reading of measuring capillary is 28 mm in case approximate formula is used. What is the error if the exact formula is used for pressure measurement?	10	3	2	3.1.1
	A bubbler or purge method is used to measure the water level. Air compressor having pressure range of 0-5 bar is used for the measurement of the water level. Air tube with opening at the bottom of the tank is used to purge the air in the water tank. Operator initially purge the 3 bar pressure in	10	1	2	•
4 (A)	the air tube and no air bubbles are observed. The pressure is varied to maximum rating of 5 bar although no air bubble is observed. In fact at the setting of 5 bar pressure the water rises into the air tube up to 5 meters measured from bottom of the tank. Estimate the water level in the tank from the different observations provided.				2.1.2
4 (B)	Following are the different applications/systems/processes wherein the temperature measurement is essential; (i) Processor of the computing system (ii) Temperature of human beings entering institute campus under COVID-19 pandemic situation. Students shall select the appropriate temperature measuring system for the above applications with justification and also explain their working principle with neat labelled sketches. (Note: Points will be assigned to explanation only if selection of system is appropriate).	10	4	6	3.8.1
5 (A)	A diaphragm pressure gauge is constructed of spring steel to measure differential of 7 MN/m ² . The diameter of diaphragm is 12.5 mm. Calculate the thickness of diaphragm, if the maximum deflection is 0.333 of thickness. Also calculate the natural frequency of diaphragm. Given: Young's modulus=200 GN/m ² , Poisson's ratio-0.28 and density of steel=7800 kg/m ³	10	2	4	4.1.1.
5 (B)	In laboratory mercury in capillary tube temperature measurement system is available. It was proposed to measure humidity present in the laboratory. Explain step-by-step way to measure humidity. Draw appropriate sketches and flow diagram to explain the procedure	10	2	5	3.6.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester - May 2022 Examinations

6	With neat labeled diagram explain working of (i) optical encoder (ii) stroboscope (iii) eddy current drag-cup tachometer (iv) peizo-electric accelerometer	20	2	3	2.1.2
7(A)	The discharge coefficient C_d of an orifice can be found by collecting the water that flows through during a time interval when it is under a constant head h. The formula is $C_d = \frac{W}{t\rho A\sqrt{2gh}}$ Find C_d and its possible error if: W=390±0.25 kg, t=600±2 s, d=12±0.03 mm, ρ =1050±0.1% kg/m³; A= π d²/4, h=3.6±0.03 m, g=9.81±0.1% m/s²	10	4	4	4.1.2
7(B)	The speed of a shaft rotating at 2880 rpm is measured using stroboscope. The stroboscope dial is slowly turned within flashing rates of 96 to 24 per second. Indicate the flash rate setting which give single, double steady images.	10	3	4	2.1.2

Pg. 3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

S. Y. S. Tech (much) Lem IV

Duration: 03 Hrs

Maximum Points: 100

Semester: IV

Program: S.Y.B. Tech. (Mechanical Engineering)

Course Code: PC-BTM404

Course Name: Mechanical Engineering Measurement

Notes:

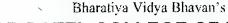
1. Question number 1 is compulsory

2. Solve any 4 questions from question number 2 to 7

2. If necessary assume suitable data with justification

3. Draw neat labeled sketches wherever required.

Q. No.	Questions		¢.	Points	со	BL	ΡI
	Following table list the measuring instrument table) for measuring mechanical properties (table) of the system. Students shall match the corresponding mechanical property.	right hand side column o	f the	04			
	Measuring Instruments	Measurand		- 17			
	Orificemeter	Temperature			3	4	100
1	Vortex meter	Displacement			3	4	1.2.3
	Anemometer	Pressure					
	Thermistor	Flow rate					
	Further student shall explain only the measurement instrument listed on left hand neat sketch. (Note: Credits will be given only	side column of the table		16			
2 (A)	It is proposed to develop measurement and comperature and pressure of a reactor applications. Proposed design aimed to retrospect ontrolled it remotely using internet new instructed to present architecture of such net and control system (explain with neat schema	chamber in pharmaceurieved data from system twork system. Students work integrated measure	and are	10	2	3	1.2.2
2 (B)	Explain generalized measurement system wi	th neat schematic diagran	1.	10	1	2	1.6.1
3 (A)	A single strain gauge having resistance of cantilever beam at a distance 0.12 m from dimensions are 25 cm (length) x 2.0 cm (length) with unknown force F applied at the free end proof of the free end. If the changes in gauge resistance calculate the gauge factor. Deflection of the F= Force, L=Length, E= Youngs modulus	om the free end. The Rewidth) x 0.3 cm (depth) duces a deflection of 11.8 stance is found to be 0.14 e free end δ = FL ³ /3EI, w	eam An mm S mm S Ω, where	10	4	4	4.6.1


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re EXAM-JULY 2022 Examinations

	Young's modulus for steel as 200x10 ⁹ N/m ²				
3 (B)	Write short note on strain gauges (explain working principle and applications)	10	3	2	3.1.1
4 (A)	Write short note on Bourdon Pressure Gauge (explain working principle and applications)	10	2	2	2.1.2
4 (B)	Following are the different applications/systems/processes wherein the temperature measurement is essential; (i) temperature of forged parts (ii) Temperature of human beings entering institute campus under COVID-19 pandemic situation. Students shall select the appropriate temperature measuring system for the above applications with justification and also explain their working principle with neat labelled sketches. (Note: Points will be assigned to explanation only if selection of system is appropriate).	10	4	6	3.8.1
5	Explain working principle of (i) LVDT (ii) Potentiometer (iii) Viscosity measurement technique (iv) Humidity measurement techniques with neat sketches	20	2	4	4.1.1.
6	With neat labeled diagram explain working of (i) optical encoder (ii) stroboscope (iii) eddy current drag-cup tachometer (iv) peizo-electric accelerometer	20	2	3	2.1.2
7(A)	The transfer function of a system is given as $\frac{361}{\left(S^2+16S+361\right)}$ Find the following for a unit step input: Undamped natural frequency, damping ratio, damped natural frequency, settling time (tolerance within 2%), peak time, rise time, percentage overshoot.	10	4	4	4.1.2
7(B)	Explain with neat sketches the two different techniques to measure liquid level in tank	10	3	4	2.1.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM EXAMINATIONS (Even SEM) May 2022

S. y. B. Tell Lem IV (Muly)

Program:

BTech Mechanical engg

Duration: 3.00 hr

Course Code: PC-BTM412

Maximum Points: 100

Course Name: Kinematics of Machinery

Semester: IV

Notes:

1. Question number ONE is compulsory solve any four out of remaining

2. Question nos. two and three should be solved on drawing sheet.

3. Answers to each sub-questions are grouped together

4. Use of scientific calculator is allowed

5. Begin answer to each question on new page.

6. Candidates should write the answer legibly

Q.No.	Questions	Pts	Cos	BL	PI
1	a) Define the following terms, illustrating with sketches where possible, element or link, lower pair, higher pair, kinematic chain.b) Describe with neat sketch a quick return motion mechanism (slotted lever-crank) suitable for shaping machine. Show how the ratio of time taken for the two strokes is determined?	4x5	1 2 3 4	2,3	2.4.
	 c) Sketch the Davis steering gear mechanism and show that it satisfies the required condition for correct steering. d) Sketch and describe different types of followers which are used with radial or disc cam. e) Explain the meaning of the following terms: circular pitch, diametral pitch, module, pressure angle. Illustrate with sketches where possible. 		*		
2	 a) A crank-rocker linkage has a 100 mm frame, a 25 mm crank, a 90 mm coupler and a 75 mm rocker. For the given mechanism find the minimum and maximum transmission angle. Sketch both the toggle position and find corresponding crank angles and transmission angles. (Solve graphically). b) For the above given mechanism, find the angular velocities of coupler and follower in terms of input angular velocity of crank as ω, for the configuration of minimum and maximum transmission angle. (Use IC method) 	12	1	3,4	2.3.

3	a) Use following data in drawing the displacement, velocity, acceleration verses theta (θ) diagram for a cam in which a knife-edged follower is	14	4	3	2.3.
	raised with UARM and is lowered with SHM: least radius of cam 60 mm, lift 45 mm, angle of ascent 60°, angle of descent 75°, dwell				-
	between ascent and descent 40°, cam rotation 180 rpm. Determine the maximum velocity and acceleration during ascent and descent.	ne			
	b) Deduce the expression for displacement, velocity and acceleration of the follower when it moves with SHM.	6			
4	a) State the fundamental law of gearing, deduce the expression for the same.	6	4	3	2.3.
	b) A gear set with a module of 5 mm/tooth has involute teeth with 22.5° pressure angle, and has 19 and 31 teeth, respectively. They have 1.0m for the addendum and 1.5m for the dedendum. (In SI. tooth system modules are given in, m, and a = 1.0m means 1 module, not 1 meter). Tabulate the addendum, dedendum, clearance, circular pitch, base pitch, base circle radius, contact ratio, angle of action for the pinion and wheel.	14			
5	a) A spur gears with 9 and 36 teeth are to be cut with 20° full-depth cutter	10	4	4	2.2.
	 with module of 8 mm. i. Determine the amount that the addendum of the gear must be decreased in order to avoid the interference. ii. If the addendum of the pinion is increased by the same amount, determine the contact ratio. 				3
	b) Deduce the expression for minimum number of teeth on gear wheel.	10			
6	 a) State the advantages of gear drive over the belt drive. b) What is interference in gear? How it is avoided? c) Define kinematic pair, classify the same. d) State and explain Kennedy's theorem. e) State and prove condition for correct steering. 	20	4 4 2 2 2 2	2	2.3.
7	a) State the conditions for straight line generating mechanism. Sketch the Peaucellier mechanism and prove that the tracing point 'P' describes the straight line.		2	3	2.3.
	b) A driving shaft of a Hooke's joint rotates at a uniform speed of 400 rpm. If the maximum variation in the driven shaft is ±5% of the mean speed, determine the greatest permissible angle between the axes of the shafts. What are the maximum and minimum speeds of the driven shaft?				

.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM EXAMINATION - JULY 2022 (DSY) S.Y. I. Teah March lem 14

Program:

S Y BTech (Mech-DSY)

Duration: 3 hr

Course Code: PC-BTM412

Maximum Points: 100

Course Name: Kinematics of Machinery

Semester: IV 11/7/22

Notes:

1. Question number **ONE** is compulsory solve any four out of remaining

2. Question nos. two and three should be solved on drawing sheet.

3. Answers to each sub-questions are grouped together

4. Use of scientific calculator is allowed

5. Begin answer to each question on new page.

6. Candidates should write the answer legibly

Q.No.	Questions	pts	co	BL	PI
1	a) What is meant by correct steering? State the condition of correct steering in words. Explain with suitable sketch.b) State and explain Kennedy's theorem.	4		2,3	2.4
	 c) What is meant by quick return ratio(QRR). Draw neat sketch of any two mechanisms which executes the QRR & explain. d) State and prove the fundamental law of gearing. e) State the conditions for generating straight line, explain with suitable diagram. 	4 4	1,2, 3,4		
2	A crank-rocker linkage has a 250 mm frame, a 100 mm crank, a 500 mm coupler and a 400 mm rocker. Crank makes 70 deg with the horizontal measured in ccw direction. Find the angular velocity and angular acceleration of the coupler and the follower, if crank is having uniform angular velocity of 6 rad/s. Determine coupler and follower angle with horizontal, also their angular velocity and acceleration directions. (relative velocity method)	20	1	3	2.3.
3	a) For the given mechanism in Q.no.2, find the min and max transmission angle. Sketch both the toggle position and find corresponding crank angles and transmission angles. (Solve graphically).	8	1,4	3,4	2.3
	 b) For a cam with knife edge follower, draw the displacement, velocity, acceleration verses theta (θ) diagram, follower is raised with UARM and is lowered with SHM: lift 45 mm, angle of ascent 60°, angle of descent 75°, dwell between ascent and descent 40°, cam rotation 180 rpm. Determine the maximum velocity and acceleration during ascent and descent. 	12			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM EXAMINATION - JULY 2022 (DSY)

4	 a) Deduce the expression for displacement, velocity and acceleration of the follower when it moves with SHM. b) Calculate the angular velocity and acceleration for coupler, linear velocity and acceleration for slider using analytical method (complex algebra). Given crank which is vertically upward is 45 mm, connecting rod(coupler) 180mm, and crank rotates uniformly 10 rad/s in ccw direction. 	12	4	3,4	2.3
5	 a) A pair of spur gears in mesh having gear ratio of 3 are mounted on shafts whose centers are 136 mm apart. If module of the gears is 4 mm, how many teeth are there on each gear? b) Two identical involute spur gears are in mesh. The module is 4 mm and each gear has 22 teeth. If the operating pressure angle is 20°, determine the minimum value of addendum needed to ensure continuous transmission of motion. c) A gear set with a module of 5 mm/tooth has involute teeth with 22.5° pressure angle, and has 19 and 31 teeth, respectively. They have the addendum of one module and dedendum of 1.25 module. calculate the addendum, dedendum, clearance, circular pitch, base pitch, base circle radius for pinion and wheel, and contact ratio. 	6 6 8	4	3,4	2.2
6	 a) Explain the phenomenon of interference in gear? How it can be avoided? b) Gear drive is better than the belt drive in certain situations. Explain how? c) What are the different criteria of classification for kinematic pair? List the pairs. (draw suitable sketches) d) What do you meant by instantaneous center of rotation(IC's)? What are their characteristics? What are different types of IC's? e) Define mobility, explain Grubbler's criterion. 		1,2	2	2.3
7	a) Deduce the expression for minimum number of teeth on wheel to avoid the interference.b) Prove that Hart's mechanism generates exact straight line.	10		2,3	2.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

RE-END SEM EXAMINATIONS (Even SEM) JULY 2022

S. y. D. Tech (muli) Servi IV

Program:

BTech Mechanical engg

Course Code: PC-BTM412

Course Name: Kinematics of Machinery

Duration: 3.00 hr

Maximum Points: 100

Semester: IV

Notes:

1. Question number ONE is compulsory solve any four out of remaining

2. Question nos. two and three should be solved on drawing sheet.

3. Answers to each sub-questions are grouped together

4. Use of scientific calculator is allowed

5. Begin answer to each question on new page.

6. Candidates should write the answer legibly

Q.No.	Questions	Pts	Cos	BL	PI
1	 a) Define kinematic pair, classify the same. b) What do you meant by instantaneous center of rotation(IC's)? What are their characteristics? What are different types of IC's? c) Sketch and describe different types of Cams. d) Compare involute tooth profile gear with cycloidal tooth profile gear. 	20	1 2 3 4	2,3	2.4
2	 a) A crank-rocker linkage has a 250 mm frame, a 100 mm crank, a 500 mm coupler and a 400 mm rocker. For the given mechanism find the minimum and maximum transmission angle. Sketch both the toggle position and find corresponding crank angles and transmission angles. (Solve graphically). b) For the above given mechanism, find the angular velocities of coupler and follower in terms of input angular velocity of crank as ω, for the configuration of minimum and maximum transmission angle. (Use relative velocity method) 	12	1	3,4	Section 1
3	 a) Use following data in drawing the displacement, velocity, acceleration verses theta (θ) diagram for a cam in which a knife-edged follower is raised with SHM and is lowered with UARM: least radius of cam 60 mm, lift 50 mm, angle of ascent 75°, angle of descent 90°, dwell between ascent and descent 40°, cam rotation 150 rpm. Determine the maximum velocity and acceleration during ascent and descent. b) Deduce the expression for displacement, velocity and acceleration of 		4	3	2.3,

	the follower when it is having cycloidal motion.				
4	1	6	4	3	2.3.
	determine the minimum value of addendum needed to ensure continuous transmission of motion. c) A gear set with a module of 4 mm/tooth has involute teeth with 20°				
	pressure angle, and has 19 and 37 teeth, respectively. They have the addendum of one module and dedendum of 1.25 module, calculate the addendum, dedendum, clearance, circular pitch, base pitch, base circle radius for pinion and wheel, and contact ratio.	8			
5	a) State the fundamental law of gearing, deduce the expression for the sameb) Deduce the expression for minimum number of teeth on pinion.	10	4	4	2.2. 3
6	 a) State the advantages of gear drive over the belt drive. b) What is interference in gear? How it is avoided? c) State and explain Kennedy's theorem. d) State and prove condition for correct steering. 	20	4,2	2	2.3. 2
, , , , , , , , , , , , , , , , , , ,	a) What is a Pantograph? Show that it can produce path exactly similar to the one traced out by a point on a link.b) Draw a neat sketch of cam profile with roller follower and show the important terms, also define them.	1	2	3	2.3.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

S. M. B. Tely Lem TV Melhanicay. END-SEMESTER - EVEN SEM - MAY 2022

1715/2

Program: B.Tech. in Mechanical Engineering

Course Code: PC-BTM415

Course Name: Solid Mechanics

Duration: 3 Hour

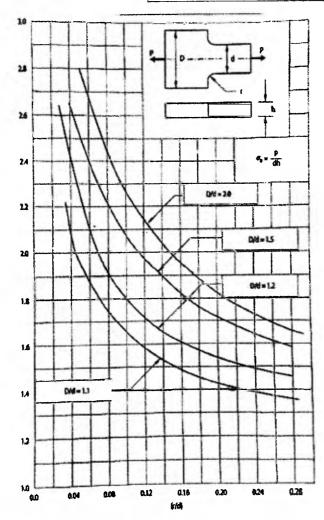
Max. Points: 100

Semester: IV

Notes:

1. Question no. 1 is compulsory, solve any 4 of remaining 6 questions.

2. 'a' is the single last digit (0 to 9) of student's registration no. in questions marked with *.


3. Assume suitable data if necessary.

Q. No.	Questions	Points	СО	BL	PI
SORY O	A) * Given the stress matrix τ_{ij} , determine the magni- $\tau_{ij} = \begin{bmatrix} -1 & 1 & -2-a \\ 1 & 1+a & 3 \\ -2-a & 3 & -1 \end{bmatrix}$ a plane parallel to x axis and equally inclined to y and z planes.	(5)	1	3	2.4.1
COMPULSORY	B) Derive following expression for an isotropic linear elastic material: $\sigma_3 = \lambda(\varepsilon_1 + \varepsilon_2 + \varepsilon_3) + 2\mu\varepsilon_3$ where $\sigma_1, \sigma_2, \sigma_3$ and $\varepsilon_1, \varepsilon_2, \varepsilon_3$ are the principal stresses and strains and λ, μ are Lame's coefficients. Highlight the step in the derivation which is based on material isotropy.	(5)	3	4	2.3.1
	C) * A flat plate as shown in the figure is made of material with ultimate tensile strength of 500 MPa. Calculate the safe load it can carry with factor of safety as 2.0.	(5)	3	3	2.1.2
	D) * A bar of steel 2 meters long, is 20 mm in diameter for 1000 mm of its length, 10 mm in diameter for the remaining 1000 mm. The bar is in tension, the stress in the largest section being $(100 + 10 \times a)$ MPa. Taking E = 200 GPa, find the energy stored in the bar.	(5)	4	3	2.2.3
Q2	A) * The rectangular components of small strain at a point is given by the following matrix. Determine the principal strains and the direction of maximum principal strain. $(p = 10^{-4})$	(10)	1	3	2.4.1

	$\begin{bmatrix} \varepsilon_{ij} \end{bmatrix} = p \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 + \boldsymbol{a} & -2 \\ 0 & -2 & 2 \end{bmatrix}$ B) * A 50 mm long steel rod of $(25+\boldsymbol{a})$ mm diameter is pressed on to a steel plate with a force of $(10+\boldsymbol{a})$ N. Consider E = 200 GPa, $\nu = 0.3$. Determine following. i. The width of the contact area	(5)	2	3	2.3.1
	ii. The maximum contact pressure				
A de Valente e de des mandaments en en constitution de des des des des des des des des des	 iii. The maximum shear stress on the contact surface iv. The maximum shear stress below the surface of contact. C) Give two cases from real life where theory of metal plasticity is essential to analyze the cases. Describe the Bauschinger effect with 	(5)	3	3	2.1.2
	the help of load vs displacement plot.	/#\	<u></u>	2	212
Q3	A) Compare between 'plane stress' and 'plane strain' problems. Give	(5)	3	2	2.1.2
	one example of each type of the problem. What is the advantage of				
	this concept?				
	B) One of the differential equations of equilibrium is	(5)	3	4	2.3.1
	$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + \gamma_y = 0$			4	2.3.1
5	,				
	Derive above equation. (Hint: use force equilibrium for a cubicle element along a coordinate axis).				
	C) * A thick-walled cylinder has an internal radius of (50+a) mm and	(10)	2	3	2.2.3
	an external radius of $(100+a)$ mm. It is subjected to external pres-	(10)			2.2.3
ĺ	sure of 1 MPa. If $E = 200$ GPa and $E = 0.3$, determine the permissible				
	internal pressure as per Maximum Principal stress theory of failure.		ĺ		
	Consider tensile strength as 50 MPa and factor of safety as 2.0. Also			! !	
	determine the changes in internal and external radii.				
Q4	A) * Collar D of 1 kg mass is	(10)	4	3	2.3.1
	released from rest in the				
	position shown in the righte and				
	it is stopped by a small plate				
	attached at end C of the vertical rod ABC. Section AB is of 10				
	mm diameter and section BC is				
	of 5 mm diameter. E = 200 GPa.				
	Determine the instantaneous				
. towards	stresses in the rod.			Salas	
	B) Explain why stress is termed as	(5)	1	2	2.3.2
	a tensor entity. Discuss the				
	difference between "stress $(0.5 + 0.1 \times a)$ m				
	tensor" and "stress vector" at a				
	point.		3	2	2.1.3
	C) Discuss the following: (i) nature of constitutive equations which	(5)	,	_	2.1.3
	relate the stress and strain for a material, (ii) True stress and strain versus Engineering stress and strain.				
	versus Engineering suces and ottain.		4	L	

Q5	A) * The displacement field for a body is given by:	(5)	2	3	2.4.1
	$\bar{u} = [((a+1)x^2z + y^2)\bar{\iota} + ((a+2)yz^2)\bar{\jmath} + (6xy^3z)\bar{k}]10^{-4}$				
	What are the strain components at (-1, 1, -1)?				
	B) Explain the principle of superimposition. Prove the uniqueness	(5)	3		221
	theorem for elastic bodies using the principle of superimposition.	, ,	3	4	2.3.1
	C) * A steel disk of (500+a) mm diameter is shrunk on a steel shaft of	(4.0)			
	50 mm diameter. The interference on diameter is 0.025 mm. Find	(10)	2	3	2.2.3
	the rotation speed at which contact pressure is zero. Also calculate				
	the maximum tangential stress at above speed. Consider $E = 200$				
Q6	GPa, = 0.3 and density = 7850 kg/m ³ . A) * State Cauchy's stress formula. Solve the following problem using	(10)	3	4	2.3.1
Qo	the formula.	(10)		7	2.3.1
	The state of stress at a point is characterized by the matrix shown.				İ
	Determine σ_{12} such that there is at least a single plane passing				
	throught the point in such a way that the resultant stress on that				
	plane is zero. Determine the direction cosines of the normal to that				
	plane.				
	$\begin{bmatrix} -1 & \sigma_{12} & (1+a) \end{bmatrix}$				
	$egin{bmatrix} \left[au_{ij} ight] = egin{bmatrix} -1 & \sigma_{12} & (1+m{a}) \ 2 & 1 & 3 \ (1+m{a}) & 3 & -1 \end{bmatrix}$				
	· ·				222
	B) Discuss significance of following terms in solid mechanics: (i)	(5)	2	2	2.3.2
	Principal strain, (ii) compatibility equations, (iii) strain gauges C) * A thin-walled rectangular box section has the mean width and				
	height of $(20+a)$ mm and $(40+a)$ mm respectively. The wall thick-	(5)	2	3	2.3.1
	ness is 1 mm. It is subjected to torque of 10 Nm. Calculate the shear				
	stress in the wall and the angle of twist per unit length. $G = 80$ GPa.				
Q7	A) Give two examples from real life about the thermoelastic problems.	(5)	2	3	2.3.2
	Write the stress-strain relationship for these problems. Prove that if				
	a body is uniformly heated, the stresses induced are zero.				
	B) Explain the following: (i) resilience, (ii) proof resilience, (iii) strain	(5)	4	2	2.3.2
	energy, (iv) strain energy density, (v) difference between gradually	(3)			
	applied and suddenly applied loading.				
	C) Discuss three modes of fracture and give two examples from real life for each mode.	(5)	3	3	2.3.2
	D) * A rectangular plate of 50 mm width and thickness 25 mm has an			1	
	edge crack of $(3 + 0.1 \times a)$ mm depth. The plate is subjected to an	(5)	3	3	2.3.1
	axial load of 10 kN and a bending moment of 2000 Nm both of				
	which tend to open the crack. The fracture toughness of the plate				
	material is $50 MPa\sqrt{m}$. Calculate the factor of safety against the				
	fracture failure.				

ANNEXURE: USEFUL FORMULAE

Stresses for two cylinders in contact with each other

$$b = \sqrt{\frac{2F}{\pi l} \left[\frac{(1 - v_1^2)}{E_1} + \frac{(1 - v_2^2)}{E_2} \right]}$$

$$p_{max} = \frac{2}{\pi} \frac{F}{bl}$$

$$\sigma_{x} = -2\nu p_{max} \left[\sqrt{\left(1 + \frac{z^{2}}{b^{2}}\right)} - \frac{z}{b} \right]$$

$$\sigma_y = -p_{max} \left[\left(2 - \frac{1}{1 + z^2/b^2} \right) \sqrt{1 + z^2/b^2} - 2 \frac{z}{b} \right]$$

$$\sigma_z = -p_{max} \left[\frac{1}{\sqrt{1 + z^2/b^2}} \right]$$

Stresses in thick pressurized cylinders

$$\sigma_r = \frac{p_a a^2 - p_b b^2}{h^2 - a^2} - \frac{a^2 b^2}{r^2} \times \frac{p_a - p_b}{h^2 - a^2}$$

$$\sigma_{\theta} = \frac{p_a a^2 - p_b b^2}{h^2 - a^2} + \frac{a^2 b^2}{r^2} \times \frac{p_a - p_b}{h^2 - a^2}$$

$$\sigma_z = 0$$
 with both ends open

$$\sigma_z = v(\sigma_r + \sigma_\theta)$$
 with both ends closed

Stresses in rotating solid disks

$$\sigma_r = \frac{3+\nu}{8}\rho\omega^2(b^2 - r^2)$$

$$\sigma_\theta = \frac{3+\nu}{8}\rho\omega^2b^2 - \frac{1+3\nu}{8}\rho\omega^2r^2$$

$$\sigma_r = \frac{3+\nu}{8}\rho\omega^2 \left(b^2 + a^2 - \frac{a^2b^2}{r^2} - r^2\right)$$

$$\sigma_\theta = \frac{3+\nu}{8}\rho\omega^2 \left(b^2 + a^2 + \frac{a^2b^2}{r^2} - \frac{1+3\nu}{3+\nu}r^2\right)$$

SIF for edge cracked plate subjected to axial load P / bending moment M

$$(K_I)_P = \frac{P}{Bh} \sqrt{\pi a} \, Y_P \; ,$$

$$Y_P = 1.12 - 0.23\alpha + 10.55\alpha^2 - 21.72\alpha^3 + 30.39\alpha^4; \ \alpha = \alpha/h$$

$$(K_I)_M = \frac{6M}{Bh^2} \sqrt{\pi a} \, Y_M$$

$$Y_M = 1.122 - 1.4\alpha + 7.33\alpha^2 - 13.08\alpha^3 + 14\alpha^4; \ \alpha = a/h$$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

S. Y. B. Ful (Mule) Leur 1V

END-SEMESTER - EVEN SEM (DSY) - JULY 2022

Program: B.Tech. in Mechanical Engineering

Duration: 3 Hour

Course Code: PC-BTM415

Max. Points: 100

Course Name: Solid Mechanics

1577/2 Semester: IV

Notes:

1. Question no. 1 is compulsory, solve any 4 of remaining 6 questions.

2. 'a' is the single last digit (0 to 9) of student's registration no. in questions marked with *.

3. Assume suitable data if necessary.

Q. No.	Questions	Points	СО	BL	PI
Q1	A) Briefly explain the physical meaning of the compatibility equations. Two of the compatibility equations are given below.	(5)	2	3	2.3.1
COMPULSORY	$\frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} + \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \frac{\partial^{2} \gamma_{xy}}{\partial x \partial y}$ $\frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right) = 2 \frac{\partial^{2} \varepsilon_{z}}{\partial x \partial y}$				
CON	Check if the above equations satisfy the following strain field (p is a constant of small value). $\begin{bmatrix} \varepsilon_{ij} \end{bmatrix} = p \begin{bmatrix} x & y & x \\ y & y & (x+y) \\ x & (x+y) & 2(y+z) \end{bmatrix}$				
				,	2 / /
	determine: Magnitude of the normal and shear stress on a plane which has its normal $\tau_{ij} = \begin{bmatrix} a-1 & a+3 & 10 \\ a+3 & 1 & 1 \\ 10 & 1 & -1 \end{bmatrix}$	(5)		3	2.4.1
	which is inclined to the x axis by 60 degrees and is inclined to the y axis also by 60 degrees.				
	C) Describe the three modes of fracture with neat sketch. Give two examples of each mode from real life situations.	(5)	2	2	2.3.2
	D) * Two 20 mm long steel rods of $(20+a)$ mm diameter are pressed against each other with a force of $(80+a)$ N. Consider E = 210 GPa, $\nu = 0.3$. Determine following.	(5)	2	3	2.3.1
	i. The width of the contact areaii. The maximum contact pressure				
	iii. The maximum shear stress on the contact surface				
	iv. The maximum shear stress below the surface of contact.				

Q2	A) A thick-walled pipe has internal radius of (100+a) mm. It is sub-	(10)	2	3	2.2.3
	jected to internal pressure of 2.0 MPa and external pressure of 0.25 MPa. If $E = 200$ GPa and $v = 0.3$, determine the thickness as per				
	the maximum principal stress theory of failure. Consider tensile				
	strength as 350 MPa and factor of safety as 3.5. Also determine the				
	changes in internal and external radii for the pipe with the calcu-				
	lated thickness.				
	B) A rectangular bar with transverse hole is subjected to bending mo-	(5)	2	3	2.2.3
	ment. The geometry parameters and the stress concentration factor				
	for the bar are as shown in the figure.				
	3.0				
j		-27			
	d/h=0				
	2.6				
	M M				
	2.2 0.5 h				
	Posterevilor har with a				
	Rectangular bar with a		į		
1	transverse hole in bending.				
	$\sigma_0 = Mc/I, \text{ where } c = h/2$				
	$1 = (w - d)h^3/12.$				
			ĺ		
	1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8				
	diw				
	Calculate the maximum stress induced around the hole if the bar				
	subjected to bending moment of 100 Nm. The dimensions of the				
	bar in mm are: $d = 10+a$, $w = 100+a$ and $h=10$.			1	
	C) Describe the importance of metal plasticity with suitable examples.			i	
		(5)	3	3	2.1.2
	Explain the following terms in the context of plasticity: (i) Devia-	(5)	3	3	2.1.2
	toric or π plane, (ii) Yield locus.		3	3	2.1.2
Q3	toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the	(5)		4	
Q3	toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z .			4	
Q3	toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z .			4	
Q3	toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z . $\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_{yz}}{\partial y \partial z}$	(5)	2	4	2.3.1
Q3	toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z . $\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_{yz}}{\partial y \partial z}$ B) Explain the principle of superposition with two examples of its ap-			4	2.3.1
Q3	toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z . $\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_{yz}}{\partial y \partial z}$ B) Explain the principle of superposition with two examples of its application. Discuss why this principle cannot be applied for non-lin-	(5)	2	3	2.3.1
Q3	toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z . $\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_{yz}}{\partial y \partial z}$ B) Explain the principle of superposition with two examples of its application. Discuss why this principle cannot be applied for non-linear systems.	(5)	2	3	2.3.1
Q3	 toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z. \[\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_y \partial}{\partial y \partial z} \] B) Explain the principle of superposition with two examples of its application. Discuss why this principle cannot be applied for non-linear systems. C) * A sliding block weigh- 	(5)	2	3	2.3.1
Q3	 toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z. \[\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_y \partial_z}{\partial y \partial z} \] B) Explain the principle of superposition with two examples of its application. Discuss why this principle cannot be applied for non-linear systems. C) * A sliding block weighing 100 N slides over a \[\text{Block} \] Block	(5)	3	3	2.3.1
Q3	 toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z. \[\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_y \gamma_z}{\partial y \partial z} \] B) Explain the principle of superposition with two examples of its application. Discuss why this principle cannot be applied for non-linear systems. C) * A sliding block weighing 100 N slides over a (10+a) mm diameter \[\frac{1000}{1000} \text{ mm diameter} \] Block Block Block 1000 mm long horizon- 	(5)	3	3	
Q3	 toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z. \[\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_y \yagge}{\partial y \partial z} \] B) Explain the principle of superposition with two examples of its application. Discuss why this principle cannot be applied for non-linear systems. C) * A sliding block weighing 100 N slides over a (10+a) mm diameter 1000 mm long horizon- \[\text{Steel} \] Steel Steel Steel This is the steel and steel a velocity. 	(5)	3	3	2.3.1
Q3	 toric or π plane, (ii) Yield locus. A) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_y and ε_z. \[\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_y \gamma_z}{\partial y \partial z} \] B) Explain the principle of superposition with two examples of its application. Discuss why this principle cannot be applied for non-linear systems. C) * A sliding block weighing 100 N slides over a (10+a) mm diameter \[\frac{1000}{1000} \text{ mm diameter} \] Block Block Block 1000 mm long horizon- 	(5)	3	3	2.3.1

Page **2** of **5**

	stopped by its impact with a rigid collar provided at the end of rod.			17	
	Ignoring friction and bending of bar, find instantaneous stress induced in the rod. Consider E = 200 GPa. Will the stress in the rod increase/decrease if the E value for mate-				
	rial is changed to 100 GPa?				
	D) Describe the Bauschinger effect with the help of load-displacement	(5)	3	3	2.1.2
	diagram. In which situations this effect is advantageous?		3		2.3.1
Q4	A) One of the differential equations of equilibrium is	(5)	3	4	2.3.1
	$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + \gamma_z = 0$				
	•			ļ	
	Derive above equation.		4	3	2.3.1
	B) * Block D of 10 kg mass is released	(10)	4		2.3.1
	from rest in the position shown in the				
	figure and it is stopped by a cover plate $(1.0 + 0.1 \times a)$ m				
	attached at end A of the vertical rod				
	ABC which is fixed at end C. Section				
111	AB is of 12 mm diameter and section				
	BC is of 6 mm diameter. E = 200 GPa.				
	Determine the instantaneous stresses in				
	the rod.				
	C) Why are the plane stress and plane	(5)	1	2	2.1.2
	strain approximations used to solve			_	
	certain elasticity problems? Give two examples of each type. Compare the				
	difference between these two				ĺ
	approaches.				
Q5	A) * The rectangular components of stress at a point are given by the	(10)	1	3	2.4.1
4.	following matrix. Determine the principal stresses and the direction				
	of the maximum principal stress.				
	$\begin{bmatrix} a-10 & 1 & 2 \end{bmatrix}$				
	$[\tau_{ij}] = \begin{bmatrix} a - 10 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & -1 & 5 \end{bmatrix}$				
	Driefly discuss the importance of principal etrasses in the design of		1		
	Briefly discuss the importance of principal stresses in the design of machine components.				
	B) * A rotor of (400+a) mm diameter is shrunk fitted on a steel shaft		1		
	of 60 mm diameter. The interference on diameter is 0.02 mm. Find	(10)	2	3	2.2.3
	the rotation speed at which contact pressure is zero. Also calculate				
	the maximum tangential stress at the calculated speed. Consider E				
	= 200 GPa, $\nu = 0.3$ and density = 8000 kg/m ³ .				
Q6	A) * The displacement field for a body is given by:	(5)	2	3	2.4.1
Ųυ	$\bar{u} = [(yz^2 + (a-10)xy^2z)\bar{\iota} + ((a+2)xyz)\bar{\jmath} + (x^3y^3 + z^2)\bar{k}]10^{-5}$				
	What are the strain components at $(1, -1, 1)$?				
	B) Discuss the importance of the constitutive equations in solid	(E)			
	mechanics. Explain how the nature of these equations change for	(5)	3	2	2.1.3
	i incentifies, explain now the nature of these equations entinge for	İ		1	
	the isotropic and anisotropic materials.		4	1	1

	C) * A thin-walled box section of uniform wall thickness 2 mm has a triangular shape as shown in the figure. The section is subjected to a torque of 25 Nm. Calculate the shear stress induced in the section and the angle of twist per unit length. Consider G = 80 GPa.	(5)	2	3	2.4.2
	D) * A rectangular plate of 80 mm width and thickness 40 mm has an edge crack of $(10 + 0.1 \times a)$ mm depth. The plate is subjected to an axial load of 25 kN and a bending moment of 2500 Nm both of which tend to open the crack. The fracture toughness of the plate material is $75 MPa\sqrt{m}$. Calculate the factor of safety against the fracture failure.	(5)	3	3	2.3.1
Q7	A) Describe the relation between the true and engineering stress/strain. Discuss the need of these concepts in engineering analysis.	(5)	3	2	2.1.3
The Company	B) What is the uniqueness theorem? Provide a proof for this theorem. C) Discuss how temperature loading is accounted for in the stress-	(5)	3	4	2.3.1
	strain relationship. Obtain the stresses for a case wherein an unconstrained solid is uniformly heated.	(5)	2	2	2.3.2
	D) Prove that the strain energy stored in a hollow cylinder of length L , polar area moment of intertia J and subjected to torque T is given by $U = \frac{T^2L}{2JG}$.	(5)	3	3	2.3.2

ANNEXURE: USEFUL FORMULAE

Stresses for two cylinders in contact with each other

$$b = \sqrt{\frac{2F}{\pi l} \left[\frac{(1 - v_1^2)}{\frac{E_1}{d_1} + \frac{(1 - v_2^2)}{E_2}} \right]}$$

$$p_{max} = \frac{2}{\pi} \frac{F}{bl}$$

$$\sigma_x = -2\nu p_{max} \left[\sqrt{\left(1 + \frac{z^2}{b^2}\right)} - \frac{z}{b} \right]$$

$$\sigma_y = -p_{max} \left[\left(2 - \frac{1}{1 + z^2/b^2} \right) \sqrt{1 + z^2/b^2} - 2 \frac{z}{b} \right]$$

$$\sigma_{z} = -p_{max} \left[\frac{1}{\sqrt{1+z^{2}/b^{2}}} \right]$$

Stresses in thick pressurized cylinders

$$\sigma_r = \frac{p_a a^2 - p_b b^2}{h^2 - a^2} - \frac{a^2 b^2}{r^2} \times \frac{p_a - p_b}{h^2 - a^2}$$

$$\sigma_{\theta} = \frac{p_a a^2 - p_b b^2}{h^2 - a^2} + \frac{a^2 b^2}{r^2} \times \frac{p_a - p_b}{h^2 - a^2}$$

 $\sigma_z = 0$ with both ends open

$$\sigma_z = \nu(\sigma_r + \sigma_\theta)$$
 with both ends closed

Stresses in rotating solid disks

Stresses in rotating disks with central hole

$$\sigma_r = \frac{3+\nu}{8} \rho \omega^2 (b^2 - r^2)$$
3+\nu \quad 2.2 \quad \quad 1+3\nu \quad \quad 1+3\nu \quad \quad \quad 1+3\nu \quad \quad \quad \quad 1+3\nu \quad \quad \quad \quad \quad \quad 1+3\nu \quad \q

$$\sigma_{\theta} = \frac{3+\nu}{8}\rho\omega^2b^2 - \frac{1+3\nu}{8}\rho\omega^2r^2$$

$$\sigma_r = \frac{3+\nu}{8} \rho \omega^2 \left(b^2 + a^2 - \frac{a^2 b^2}{r^2} - r^2 \right)$$

$$\sigma_{\theta} = \frac{3+\nu}{8} \rho \omega^2 \left(b^2 + a^2 + \frac{a^2 b^2}{r^2} - \frac{1+3\nu}{3+\nu} r^2 \right)$$

SIF for edge cracked plate subjected to axial load P / bending moment M

$$(K_I)_P = \frac{P}{Bh} \sqrt{\pi a} Y_P ,$$

$$Y_P = 1.12 - 0.23\alpha + 10.55\alpha^2 - 21.72\alpha^3 + 30.39\alpha^4; \ \alpha = \alpha/h$$

$$(K_I)_M = \frac{_{^{_{0}M}}}{_{Bh^2}} \sqrt{\pi a} \ Y_M$$

$$Y_M = 1.122 - 1.4\alpha + 7.33\alpha^2 - 13.08\alpha^3 + 14\alpha^4; \ \alpha = a/h$$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

S. Y. M. Fell (Mell) Lem [

END-SEMESTER - RE-EXAMINATION - JULY 2022

Program: B.Tech. in Mechanical Engineering

Course Code: PC-BTM415

Course Name: Solid Mechanics

Duration: 3 Hour

Max. Points: 100

Semester: IV

Notes:

1. Question no. 1 is compulsory, solve any 4 of remaining 6 questions.

2. 'a' is the single last digit (0 to 9) of student's registration no. in questions marked with *.

3. Assume suitable data if necessary.

Q. No.	Questions	Points	СО	BL	PI
COMPULSORY	A) Figure shows a solid element located inside a stressed body and defined in a cylindrical coordinate system. To derive one of the equilibrium equations, it is required to compute all forces acting on this element in r-direction due to stresses acting on its six faces and the body force. Obtain the expressions for the forces acting in r-direction on the two	(5)	3	4	2.3.1
	faces abcd and a'b'c'd' and for the body force acting on the element in r-direction. B) * A notched rectangular bar as shown in the figure is subjected to tensile force $F = (1000 + 10 \times a)$ N. The dimensions of the bar are $w - 12$ mm, $d = 10$ mm, $r = 1$ mm, thickness $= 2$	(5)	3	3	2.1.2
	mm. Calculate the maximum stress induced in the bar. C) * Given the stress matrix $\tau_{ij}, determine the magnitude of the normal and shear stress on a plane paragraph of the paragraph of t$	(5)	1	3	2.4.1
	allel to z axis and equally inclined to x and y axes. D) Discuss the significance of the following terms in the energy-based approach of solid mechanics: (i) strain energy, (ii) strain energy density, (iii) resilience, (iv) proof resilience. Give two examples from real life where the energy-based approach is more suitable for calculating the stresses/strains.	(5)	4	3	2.1.2

Q2 A) * The matrix representation of the stress state at a point is given by	(10)	1	3	2.4.1
the following matrix. Determine the principal stresses and the				
direction of the minimum principal stress.	,			
$\begin{bmatrix} a+1 & 5 & -1 \\ 5 & 10 & a & 1 \end{bmatrix}$				
$[\tau_{ij}] = \begin{bmatrix} a+1 & 5 & -1 \\ 5 & 10-a & 1 \\ -1 & 1 & 2 \end{bmatrix}$				
How are the principal stresses related to the design of machine com-				
ponents?				
B) * A thick-walled cylindrical vessel has an internal radius of	(10)	2	3	2.2.3
(1000+a) mm and an external radius of $(1050+a)$ mm. It is sub-	(10)	2	,	2.2.3
jected to the internal pressure of 10 MPa. If $E = 200$ GPa and $= 0.3$,	i			
determine the permissible external pressure as per the Maximum				
Principal stress theory of failure. Consider tensile strength as 200				
MPa and factor of safety as 2.0. Also determine the changes in in-				
ternal and external radii.	(5)	2	3	2.4.1
Q3 A) * The displacement field for a body is given by:	(3)	2	,	2.7.1
$\bar{u} = [((a-10)xyz + x^2)\bar{\iota} + (y^2 + xz^2)\bar{\jmath} + ((1+a)xz^3)\bar{k}]10^{-4}$				
What are the strain components at $(1, 1, 1)$?		2	3	2.3.1
B) * Two cylindrical rollers of $(50+a)$ mm diameter and $(30+a)$ mm	(5)	2	3	2.3.1
length are pressed against each other with a force of $(100+a)$ N.				
Consider E = 200 GPa, ν = 0.3. Determine following.				
i. The width of the contact area				
ii. The maximum contact pressure				
iii. The maximum shear stress on the contact surface iv. The maximum shear stress below the surface of contact.				
	1		-	
C) * Collar S of 2 kg mass is re- leased from rest in the position	(10)	4	3	2.3.1
shown in the figure and it is				
stopped by a small plate at-				
tached at end R of the vertical				
PQR. The rod is fixed at P .				
Section PQ is of 10 mm diame-		- 18		
ter and section QR is of 15 mm				
diameter, E = 200 GPa. Deter-				
mine the instantaneous stresses				
in the rod.				*
R				
$(2.0 + 0.1 \times a) \text{ m}$				
Q4 A) * A rotor of (600+a) mm diameter is shrunk fitted on a steel shaft	(10)	2	3	2.2.3
of 80 mm diameter. The interference on diameter is 0.03 mm. Find	, ,			
the rotation speed at which contact pressure is zero. Also calculate				
the maximum tangential stress at the calculated speed. Consider E				
$= 210 \text{ GPa}, \nu = 0.3 \text{ and density} = 7800 \text{ kg/m}^3.$				
B) Thermoelastic problems are important in design of machine	(5)	2	3	2.3.2
components. Discuss the nature of thermoelastic problems with				

	two examples from real life and state the stress-strain relationship for these problems. Develop the expression for stresses for stresses in a body which is uniformly heated. C) What are the three modes of fracture in solid bodies? Which mode	(5)	3	3	2.3.2
	is the most common? Provide two examples from real life for each				
Q5	mode. A) Discuss significance of following terms in solid mechanics: (i)	(5)	2	2	2.3.2
QJ	Compatibility equations, (ii) Strain-displacement equations, (iii) strain gauges.	(0)			
	B) State the 'superposition principle' and 'uniqueness theorem'. Provide an outline of proving the uniqueness theorem form the superposition principle.	(5)	3	4	2.3.1
	C) * A thin-walled box section is of rectangular shape; it has the mean width and height of (30+a) mm and (50+a) mm respectively. The wall thickness is 2 mm. It is subjected to torque of 40 Nm. Calculate the shear stress in the wall and the angle of twist per unit length. G = 82 GPa.	(5)	2	3	2.4.2
	D) Explain the Bauschinger effect in the context of metal plasticity.	(5)	3	3	2.1.2
Q6	A) Explain the following: (i) shear flow, (ii) stress concentration factor, (iii) stress intensity factor, (iv) stress tensor.	(5)	2	3	2.1.2
Total of Control	B) The Lame's coefficients λ , μ for an isotropic linear elastic material are defined as: $\sigma_3 = \lambda(\varepsilon_1 + \varepsilon_2 + \varepsilon_3) + 2\mu\varepsilon_3$ where σ_1 , σ_2 , σ_3 and ε_1 , ε_2 , ε_3 are the principal stresses and strains. Derive these expressions.	(5)	3	4	2.3.1
	 C) Discuss the plane stress and plane strain approximations. Compare between these approaches with two examples of each type. D) * A bar of steel 1 meters long, is 50 mm in diameter for 250 mm of 	(5)	1	2	2.1.2
	its length, 20 mm in diameter for the remaining 750 mm. The bar is in compression, the stress in the smallest section being $(200 + 10 \times a)$ MPa. Taking E = 200 GPa, find the energy stored in the bar.	(5)	4	3	2.2.3
Q7	A) Derive the following equation of equilibrium.	(5)	3	4	2.3.1
	$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + \gamma_x = 0$			The state of the s	
	B) Derive the following compatibility equation. Hint: Begin with the strain-displacement relationship for ε_x and ε_y . $\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$	(5)	2	3	2.3.1
	C) Describe the nature and the need of the constitutive equations. Illustrate the typical form of these equations for the isotropic and anisotropic materials.	(5)	3	2	2.1.3
	D) Discuss the metal plasticity and provide suitable examples where it plays an important role in design of certain components. What is the significance of Deviatoric or π plane and Yield locus in the plasticity analysis?	(5)	3	3	2.1.2

ANNEXURE: USEFUL FORMULAE

Annexure 1

Stresses for two cylinders in contact with each other

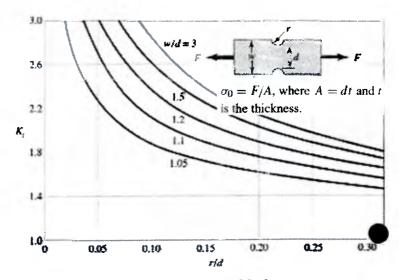
$$p_{max} = \frac{2}{\pi} \frac{F}{bl}$$

$$b = \sqrt{\frac{2F}{\pi l} \left[\frac{(1 - v_1^2)}{E_1} + \frac{(1 - v_2^2)}{E_2} \right]}$$

$$\sigma_{x} = -2\nu p_{max} \left[\sqrt{\left(1 + \frac{z^{2}}{b^{2}}\right)} - \frac{z}{b} \right]$$

$$\sigma_{y} = -p_{max} \left[\left(2 - \frac{1}{1 + z^{2}/b^{2}} \right) \sqrt{1 + z^{2}/b^{2}} - 2 \frac{z}{b} \right]$$

$$\sigma_z = -p_{max} \left[\frac{1}{\sqrt{1 + z^2/b^2}} \right]$$


Stresses in thick pressurized cylinders

$$\sigma_r = \frac{p_a a^2 - p_b b^2}{b^2 - a^2} - \frac{a^2 b^2}{r^2} \times \frac{p_a - p_b}{b^2 - a^2}$$

$$\sigma_{\theta} = \frac{p_a a^2 - p_b b^2}{h^2 - a^2} + \frac{a^2 b^2}{r^2} \times \frac{p_a - p_b}{h^2 - a^2}$$

 $\sigma_z = 0$ with both ends open

 $\sigma_z = \nu(\sigma_r + \sigma_\theta)$ with both ends closed

Stresses in rotating solid disks

$$\sigma_r = \frac{3+\nu}{8}\rho\omega^2(b^2 - r^2)$$

$$\sigma_\theta = \frac{3+\nu}{8}\rho\omega^2b^2 - \frac{1+3\nu}{8}\rho\omega^2r^2$$

$$\sigma_r = \frac{3+\nu}{8} \rho \omega^2 \left(b^2 + a^2 - \frac{a^2 b^2}{r^2} - r^2 \right)$$

$$\sigma_\theta = \frac{3+\nu}{8} \rho \omega^2 \left(b^2 + a^2 + \frac{a^2 b^2}{r^2} - \frac{1+3\nu}{3+\nu} r^2 \right)$$

SIF for edge cracked plate subjected to axial load P / bending moment M

$$(K_I)_P = \frac{P}{Bh} \sqrt{\pi a} Y_P .$$

$$Y_P = 1.12 - 0.23\alpha + 10.55\alpha^2 - 21.72\alpha^3 + 30.39\alpha^4; \ \alpha = a/h$$

$$(K_I)_M = \frac{6M}{Bh^2} \sqrt{\pi a} \, Y_M$$

$$Y_{\rm M} = 1.122 - 1.4\alpha + 7.33\alpha^2 - 13.08\alpha^3 + 14\alpha^4; \ \alpha = a/h$$